fpxEngine

Copyright © <Dates> by <Authors>. All Rights Reserved.

Table of contents

Lets Get Startedvvuiie i 4
ADOUL DX 1 itiiiiii it 6
5T [1T o P 7
What you need firsSt .. .uuiie i e 10
Playing the tablece e e 11
1= [PP 12

BEGINNEI'S GUIAE . ovuiieiiiii it s e s e e e e s e e s s e e aeeanes 13
If you have never coded Deforeocviviiiiieiiiiesr e e e 16
User INPUE SECHION ..u.vuiiiiiie s r e e ans 17

User INPUL COAE COPY wuuvuirniiiiiiiiiiiee st st e e e e e s s s s s e en e s e ens 28
Hit Code SECHION ..vuiveiiiee i e e e een 32
EVENE SECHION ..eviii e 45

fPXENGINE SyStem FEALUIEScuuiieiiii it r e e e e 49
The Table MENUueeie e en e een 50
CUSEOM BallS ..vuiieiiieieie i 52
[T 0] 01T Y =T 01 P 57
Ball SNAAOWSeeiiiicie e 58
BAM i een 59
How the table is BUIILcevei e 60

fDXENGINE PrESELS .uuiieiiieiiiiiie st s s e s e s e e e e e eeas 63
AdAENGINEEVENLcviie i 67
1A (o | =Y Y= o | PP 68
AAAMUSICSEL ..evuieeiiiiii it s s s e s s e a s e e e e rn s enaeenns 69
AV Lo | B 1] o] = 1 PP 71
AdALIGhtFX e 84

AddSCONNGEVENLeecei 85
AT [0 NS o0 = P 86
BallS@VEL ..eiieiiiiiii e 88
JACKPOT . eeie i 94
= = = | PP 98
1) 01l = | PPN 103
A Lo | U 1 o =T P 107
1T PN 112
SIINGSNOTS ..eeeiii e 115
INLANES Leviiiiiii i e 116
@ 11 = PPN 120
N5 81Tl = | K] N 125
25KAWANA ..eeii i e 126
AddAIErNAtINGLANESiviiiiiii e 127

Pages still being WHEEENccuieiice e 132
fPXAAVANCESCOIE ...iviitiiiie e e e e s s e e e s e e aaenns 132
More fPXENGINE PreSets ...cvuiiviiiiiiiiii et 148

LI L= LU PP 148
How to use the Vault ... e 149
Using the Vault Worksheets ..o 150
Vault - Drop Targetscuieeiieiiiiiiiie e e e e e e e enn e 163

vault_fpxDropTargetBanklcocuiiiiiiiiiiiiin e 163

vault_fpxDropTargetBanK2cccvveiiiiiiiiiiiieir e e e n e eans 177

Vault - Stand Up Targetscuovivuiiiiiiiiiiiinn i rs e s e e en e 190
Vault_fpxXTarget3Banklovveiiiiiiiiici e 190
vault_fpXTarget3Bank2c.oiviieiiiiiiecrrr e e 206

AV 10 L I g o T 1= PP PPRPN 221
VAU FDXAV L e aas 221

VaUIt = KICKEIS vneeieiii e e e e e r s e e aaenes 237
VaUIE_fPXKICKEIL ..oeeiiiii e e e e eaas 237

Plastics and Spare Partsccc.ovviiiiiiiiiiciiren e 249

VaUIt_fPXPIASHICSL ..euieeii i e e e ea s 250

Lets Get Started

Lets Get Started

("O' Let's Get Started
LY

The fpxEngine is designed for all levels of pinball developers, from the advanced coder to
people who have never scripted before. A powerful and full featured pinball engine, fpx was
built around the concept of presets and using each of the presets with just one line of code.
The entire structure of fpx was carefully written and arranged to make ease of use as
simple as possible

This is a fully functional script engine, with a special tutorial included, structured and aimed
at beginners (though intermediate scripters would like this as well) It is a very different way
of doing things, a lot of things were not added (like polish to the script, lack of details in the
example table) but that was to not overwhelm beginners with too much high end concepts.
Everything is heavily commented, even the hit code is structured to add and expand
scripting methods and concepts as the user goes through it.

The engine includes 4 player scoring, 9 digit A.N.D., with routines that handle everything
from Table start, to the match and light Attract modes. The table design has examples and
fully functioning code, including bonus and bonus countdown routines, simple background
sound system, and examples of extra ball, Jackpot among others.

& Beginners Guide

Because the main engine contains code that only advanced scripters should change, the
fpxBeginners Template is designed to give absolute beginners the ability to customize their
tables in as easy a manner as possible without having to dig through very confusing and
easy breakable advanced code.

Learn all the basics of the fpxEngine, with the step by step tutorial that shows and explains
everything as you go along. There is not a easier template engine out there, you don't even
need previous coding experience!

Lin

=~

Q fpxEngine System Features

System Features details some of the special features and settings that you and a player
can use to modify the table, like the menu system built into every fpxEngine table to adjust
Balls per game, as well as unique settings to adjust the overall table lighting and shadows.

=~

Lin

© fpxEngine Presets

The magic behind the fpxEngine. No more coding complex routines, no more months of
learning how to code, no more months of debugging and pulling your hair out trying to figure

things out. fpx includes a powerful suite of preset code that's just 1 or 2 lines of code to use
powerful and common pinball features like Extra Balls, Jackpots, and many others. Soon,
fpx will add even more with the new Vault system, to give you even more advanced features
such as Advance Value, drop target routines, and multiball, complete with objects you can
copy and paste right into your table, and it works!

Link

& AddScoringEvent

One of the most powerful and simplest to use features with fpxEngine are the built in
scoring features, such as a "Extra Ball" or adding a bonus Multiplier. In other engines,
these are very tough to code and debug, but fpxEngine contains a suite of special features,
all written in such a way that you can use them anywhere you want, and all with a simple
copy and paste of one line! This section contains all the information you would need, and
has a full in-depth explination of what the code does, and even the code used for advanced
coders who wish to modify the code. There are already multiple special features, with more
being planned to be added.

Lin

=~

© The vault

Don't have any coding or design experience? No problem, you are using the fpxEngine,
you can have a fully designed and coded table in a matter of minutes. The Vault is a suite of
small prebuilt templates that you can copy and paste directly into your table, and when you
press play, It works! Unlike other engines, you are not limited to one design, or with the
most basic coding, the vault items have full lighting and music effects, the ability to have
"pinsettings”, and many more features built in, all in a highly professional presentation that
will wow you and the people who play it. Fast, simple, easy, and the flexibility to produce a
design the way you want it, not forced like the other templates do.

Lin

=

& Better Arcade Mode (BAM)

Without Better Arcade Mode (or BAM for short) Future Pinball is pretty useless. fpx
contains basic support for BAM physics, in a incredibly easy manner. You can adjust the
physics from the old EM era to the modern era with just one change of a number, and even
set the bounce of the flipper just as fast. As time goes on, the fpxEngine will include even
more preset BAM code to help make your game even better.

Lin

=

Easy EPub and documentation editor
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.
Create help files for the Qt Help Framework

BetterArcadeMode.htm
https://www.helpndoc.com
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

About fpx
Lets Get Started »

c@ About

& About The fpxEngine

The fpxEngine is a direct replacement for the new-table template for Future Pinball, with
bug fixes, and missing code added, as well as additional code. This uses all stock objects
and textures from Future Pinball (we call it FP), with the exception of the custom Flippers
models

This is intended for the absolute beginner, and was developed to make it as easy as
possible for the beginner to script his own games. This engine template was made as
simple as possible, so there are some things that lack polish or additional coding. This is
also a learning template, as it describes each line of code, and was written and structured
to teach basic scripting concepts to people who may never have scripted before.

In fact, there is a lot less scripting than any other template or table, nearly all of it has
already been done and instead just has presets where all you have to do is just change a
number or type in different text. The actual scoring code for things like scoring points from
the ball hitting a target or a bumper (the big fat things you see in all actual pinball games)
are all ready coded in for you. Any code a beginner needs to use them can (usually, with
the basic ones) be done by one line of code, that usually you can just "copy" them and then
"paste” them. Even when the engine supports more and more advanced features and
scoring, it will be done in a manner that is as simple to use as possible.

We all hate scripting, it is not easy, even the best of us makes mistakes and it can take
hours to find and fix a mistake.

The best way for you to look at this is in writing all this code for you, | also made all the
mistakes for you, and | corrected those (I hope)

So open up the script, start from the top, work your way down till you get to the engine code
and | tell you to stop. If you want to learn more about FP, the built in FP help file is a very
good resource to learn more from. Though FP is far more simple to use than the other
editor, it still has lots of settings and options. The Future Pinball manual does a very good
job of detailing those, so | recommend you give it a good look before you start this. Just
click on help at the very top text menu in the FP editor and then click "open Manual”

& About Better Arcade Mode (BAM)

FP has a secondary program (or a plugin as it is usually called) called Better Arcade
Mode (or BAM for short)

BAM greatly extends the capabilities of FP, there's lots of new features, and it's a real pain
to use because it is very very complex stuff. Instead, the fpxEngine supports the basic
BAM code for physics and is set up for you in as simplest manner as possible. The biggest
thing with BAM is it finally fixes the play ability of FP which is all added here. | have also
included some other helpful features of BAM, and then rewrote some things to make it as

easy as possible.

The fpxEngine is all | can handle at the moment, so | wont be able to talk much about BAM
here. If you have a problem or want to learn more about BAM, you should go to
www.gopinball.com.By the way, say hi to me there as well. :)

Benefits of a Help Authoring Tool
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.
Easily create HTML Help documents

Build History

Features
Lets Get Started »

(i? Features

The FPx template is designed for those who want to get their feet wet with scripting, and
yet has all the power and features for Intermediate coders to use.

Here's a list of features:

Q Build 10

" 4 players support

' Bonus count up to 159, bonus multiplier up to 15x

" Replaced tilt system with a custom plumb bob tilt setup

" Added Variables for easy settings. balls per game, bonus, replay scoring etc

' 2 ball multiball

' Player memory system that requires typing in one line of code per light

" ball save, extra ball, special and jackpot support

" Complete routines included for all aspects of arcade tables, from power up, light Attract
mode to a match feature

" Initialization, Light Attract, Match routines all ready included

" easy control of lights for Light Attract and game play, no typing required

' Pause key plays tune

' 9 element x4 translight display, HUD display x2 A.N.D. (Alpha Numeric Display) to support
up to Williams System 11

"HUD display can be hidden or shown using the default HUD key set in the editor (Usually
the tithe key, just below the esc key)

' Pre-set unified Bally type scoring

' Debug system variable for code testing in place. press F9 key at editor. Also writes to text
file during debug mode to track code

" Special HUD displays for debug mode, shows bonus etc

" Multiple sound system capability with background music support

" Solid State and A.N.D. support HUD display

' Preset feature scoring Extra ball/Special etc with just one line of code

' Easy Beginners Fail safe system. All access needed for easy modification of the engine
in ONE place without needing to touch the engine code

"You can add/remove/replace lights, sounds, change the display, adjust timers etc through

https://www.helpauthoringsoftware.com
https://www.helpndoc.com/feature-tour

this one setup

' Code is heavily remarked, and teaches you new methods as you work your way down the
hit code

" Engine is fully automated as possible, so no need to touch the engine code, no rocket
science degree needed.

Q Build 11

- fpxEngine is now so simple even a person with no coding experience can use it
(scriptwise that is)

- fpxEngine has been completely restructured and rewritten. It is now the easiest template
engine to use since Pinball Construction Kit

- fpxEngine now has a manual, that describes a lot more than you would think

- Preset section added. all accessed with one line of code to multiple scoring routines. Just
point and shoot

- Bug fixes etc.

- Light Attract routine expanded, now displays high score list, table name. This is now fully
automated, so no need to add light bulb interval/on/off code

- BAM support added with a simple system for the user to select among multiple xmi
physics files and a up to 10 different flipper bounce settings.

- Select-able Debug mode (press f9 key in editor) now shows general table info including
physics package or engine debug information

- New Display and Light Seq routines added

- New Control routine added, which adds multiple music set support, with the ability to
customize all displays/lightSeg/music per music set. Support added for Williams System 7
and early 1979 music sets.

- Users should be able to play any music set/company style with any fpx table

- All display and lightseq code is also usable in code as well (e.g. AddDisplay
"BlinkMessageFast":AddLightFX "BlinkFast")

- HUD displays expanded from 2 to 4 displays, to match the translight displays. This is for
possible future support of Williams/Bally system11

"and Data East tables

- all music/sound code has been (or will be by the time the next build is released) moved to
the main control routine (AddMusicSet) so we can have multiple styles without the user
having to do anything

- Multiple background sound support (up to 29) using increasing frequency/pitch common
with Solid State games.

- There are about 15 display routines now coded, with 6 new routines added. (More will
come)

- AddEvent has been stripped of any code completely. Now it is just for typing in
messages for the display to use, and your custom code hooks like what to do with a new
ball etc.

Q Build 1.2
- Fixed: Bam "fix" breaking nvHighscore. From now on, you need to set the highscore and
names in the script. You will find how to do that right here
- Fixed: textdebug now shows proper information in debug mode. This appears to happen
with slower computers, or the debug mode just isn't fast enough to write too much text
- Removed music/light/display routines not used.
- Drain code fixed to allow main music feature to finish playing before bonus count started.
(TimerDrain)
- Added some mechanical sounds
- constAddDebug has different settings based on number
1 = shows engine subroutines and addEngineEvent

2 = shows AddMusicSet subroutines and the music case it is playing. This also now
shows AddLightFX and AddDisplay subroutine calls
- Renamed some things, deleted unused routines. LightAttract scroll effect slowed,
replaced table name showing with replay goal instead
- Added Mystery Feature. Player can set minimum and maximum values for a random
score
- AddScoringEvent sections included in the manual with copies of the code used by the
engine and complete description for coders
- AddDisplay new additions: "Radar"
- HUD key added (show HUD/ Hide HUD) Because BAM uses the default HUD key for it's
own menu, a second HUD key is added set to the "H" key. nvR and nvS support is added,
the table will now save menu settings.
- Table Menu system added. Use "M" key and then flipper buttons to change options
You have to exit the table and restart the table again for the changes to take place.
- Save/Load system added. This saves number of Balls per Game, scroll/no scroll, high
scores plus high score names, plunger type (enter key or arrow keys) and 3 difficulty levels
- Manual has been updated, and almost completely rewritten in spots. quite a few new
pages have been added.

BAM Support

- Support added for flipper and ball shadows

- Custom ball, including blinking ball based off example by ravacade (turned off by default)
- Some small improvements made, and some additional support. None of the fancy stuff
nor is it up to standard with the newer tables.

Textures now set color as well as graphics, so all objects set to a light white/grey color for
easy modification. A new manual page added just for the template objects, and to explain
all the new features. (fpx Table Build)

- Beginning the new overhauled Debug and script generator. Press F9 in editor, a option
list appears. Numberpad 1 generates a copy of the User section code to fpDebugTextLog.
This is script ready. Numberpad 5 shows BAM settings used by fpx

constAddDebug = 0 shows variable info at the start and at the loss of a new ball.

- First Vault item - fpxAdvanceScore- About halfway done, this is a test of the main master
code and template for the first Vault Item and the basic structure of the code. The code will
be folded into the engine when completed, this is placed in the Hit Section for now for
review and testing. This code features 2 pin settings to help customize your game.
fpxAdvanceScore advances the score by 10k and awards extra ball and special when lit,
but is fully adjustable to score any fpx AddScoringEvent calls.

There is a alternate code in the manual page to score features instead based on the
features presets in AddScoringEvent

The manual page explains this vault item, and has a complete description of the code, lists
of the variables and objects, and also has alternate code you can include for additional
scoring features. . This also includes full information and the complete code to use in non
fpx tables.

- AddScoringEvent - Mystery and Add Multiplier will now override music already playing. A
new AddScoring Event "SpeciallsLit" has been added to the script and is demoed in the
Vault fpxAdvanceScore as well.

- PhysicsXML=2 replaced to original Jungle Girl code, Just wasn't Bally with others xml
settings. Plays a bit slower. An old experiment also included, code to prevent the ball
shooting out like a cannon at the very tip. Still too fast, but flipper speed animation gets too
slow. Only way to improve this is with a possible future new script feature added by BAM.

- Manual updated and some pages changed or added to reflect new features.

© Build 1.4
- Manual rewritten and up to date

© Build 1.41
- The fpxEngine overhaul has begun, with a rewrite and overhaul of the code to make things
even easier for Beginners and non-coders to be able to use the engine and design their
own tables from scratch
- shivaFlippers (version 3.1) added.
- Plastics in the Vault are now lighted objects, with special code added for BAM support
and blinking effects.
- Menu key changed to the Special 2 key
- removed music sets, only Bally81 set in. This was to save time and get a master named
music set in. The removed music sets will be added back in and renamed in the future.
- Messages removed from subroutines and placed in AddMusicSet
- New Vault items (basic) added. These are fully coded, but are simplified scoring. There
are 7 vault items added for this version.

- StandupTargets

- Drop Targets

- Kickers

- triggers

- Plastics and spare parts
- New AddScoringEvents

- (AddScoringEvent "25kAward") 25kAward

- (AddScoringEvent "AddAlternatingLanes") Alternating Lanes (for both Inlane and
Outlanes) with pinsettings in the User Define Section

- (AddScoringEvent "OutLaneSpecial") Special code to handle a Outlane special,
that also turns off the outlane lights

- (AddScoringEvent "SpeciallsLit") a prompt informing the player that a special has
been lit
- Ball Shadows added with settings (On/Off) in the User Define Section
- Playfield lighting added, with custom lens and bulb lighting code. With 3 settings in the
User Define Section
- Dynamic Shadows added. With settings (On/Off) in the User Define Section
- Specail Bam Lighting code has been added for all lights, bulbs, and plastics, using
Brightness, GlowRadius, and GlowBrightness. 1.14 only has these tested for the playfield
lighting settings at it's brightest. Medium and Dark settings are there, but will be adjusted in
the next versions.
- Manual rewritten but more rewrites are needed. A new section in the manual has been
added for the Vault.

Full-featured EBook editor
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free EPub producer

What you need first

What you need first
Lets Get Started »

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/create-epub-ebooks

fo What You Need First
LY

Guide to Future Pinball (by GeorgeH) http://gopinball.com/forum/viewtopic.php?
f=84&t=6054

Write EPub books for the iPad
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free help authoring tool

Playing the table

Playing the table
Lets Get Started »

{ig Playing The Table

By now, you should have a good idea about the FP editor, so now it's time to start working
with the fpxTemplate.And of course you are going to want to play it to test it out. Open up
the template from the location you stored it in. As you can see, it's not exactly a lot there, it
pretty much looks like the basic "new_table" that fp has, but it's not the looks that matter, it's
what's under the hood that counts.

Still, press play and have a go at what's there. You will notice some pretty high end
features, like the display text and the lights, that just isn't there in the new_table template. In
fact, the fpxEngine is the third most powerful engine released, only shivaEngine2 (for old
vp) and propst (for FP) are more powerful, but then, fpx also happens to be the easiest to
use not matter what template you look at, or what skill level as a coder you are. In fact, the
entire object of the fpxTemplate is to make it as easy to use for people who don't even
know how to code, and there really isn't anything like it (as far as | know at least)

Have a play or 2 and then come back here. If you look in the actual editor, there are a group
of triggers (the funny looking star shaped objects) to the left of the table. (You may have to
increase the magnification, as FP likes to just show the table dimensions, and not what is
outside the table in the editor)

You will notice a menu system comes up. This is where you can change balls per game,
skill levels, set to use the arrow keys before you hit enter etc . This is a built in feature of the
engine, more options will be added soon.

© The Beginners Guide

fpx comes with a bunch of examples and code already done for you, and these are the
ones you can play with. You can find a complete walkthrough in the Beginners Guide in this
manual. These examples uses the trigger objects, and have a different feature assigned to
each trigger (one adds a extra ball, one scores the jackpot etc) so just select one, look at
the name of the trigger at the top left OPTIONS bar, hold the left mouse button down, and
then just drag it onto the table, press play and it will work. Once you are done, drag it back
to where it was in the editor, and drag another in it's place.

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/help-authoring-tool

to adjust the plunger

These are the preset features built right into fpx. There's not a lot (at the moment) but that
will change in time. When you do open the script editor, you will be able to change the text
that is displayed when a ball rolls over the trigger (you don't have to if you don't want to) or
change a number (you don't have to do that either, only if you want to) and maybe just copy
and paste the code if you want to duplicate a feature and have 2 of the same feature in your
game. These triggers are coded in the "_Hit" section, | go through each one of them in the
beginners guide, as you move down the script and tell you what they do, but you actually
don't have to change them.

 The Vault

Of all the unique features that fpxEngine has, nothing out there is comparable to the Vault
system. The vault is a collection of premade templates complete with code that you can
copy and paste right into your design (or use multiple vault items to make a complete
design) and within minutes, have a fully working, complete with code, table. In fact, there is
no engine, template system, or sample tables out there there have the level of
sophistication and polish that the vault items have. Most templates are very basic, knock
some targets down, get a basic score, and then pop them back up. The target vault items
in fpx do far more, they have complex lighting and flashing routines, multiple levels of
scoring, and even has built in player memory that will carry over to the players next ball. And
it's all adjustable. Powerful routines built in such as advancing score, jackpots, and
alternating lanes, with multiball and lane change coming among others. All with a simple
copy and paste that should take you no more than a minute to add.

The vault is only just beginning, already there are vault items for several Future Pinball table
objects. Soon, new vault items will be added that will be based on the actual arcade pinball
tables, and you can mix and match vault items however you see fit. Consider it a simple
jigsaw puzzle, but for pinball table design.

There will be more examples and code added, but ultimately, that's all you would really
have to do. And even if you are unsure, a lot of help is written right in the script, and usually
a far more long winded version will be here in this manual.

Produce Kindle eBooks easily
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.
Full-featured Help generator
Credits

Credits
Lets Get Started »

(i? Credits

fpx Engine by shiva (C) 2019
p.d.Sanderson

fpx Engine Template by p.d.sanderson, is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com/feature-tour

All custom table graphics are completely redrawn work and not part of the original artwork
All other copyrights held by the original holders
Permissions may be sought at www.gopinball.com or at PinballNirvana.com

This engine may contain or contain additional Script components by popotte. Gimli,
GeorgeH, Ravacade, Franisco666, Smoke, and others

Additional Model components by HappyCab, popotte, and Franisco666

Future Pinball by Black

BAM by Ravacade

This copyright must be included with all public copy's using the fpxEngine

Terms Of Use

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE").

THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW.
ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or licensee
(but not in any way that suggests that they endorse you or your use of the work).
Noncommercial — You may not use this work for commercial purposes.

Derivative Works — You may alter, transform, or build upon this work, with the
understanding that any changes may be placed in the next official update to the FPX
Template

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

Create help files for the Qt Help

Framework
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free HTML Help documentation generator

Beginner's Guide

Beginner's Guide

fo Beginner's Guide
LY

Because the main engine contains code that only advanced scripters should change, the
FPX Template is designed to give absolute beginners the ability to customize their tables
in as easy a manner as possible without having to dig through very confusing and easy
breakable advanced code

Instead, this template is split into 2 main sections, the user define section, and the main

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com

engine code.

The USER DEFINE section was written to give access to all the main things you would
want to change, like sounds/lights/ display messages, without having to search through
thousands of lines of code or accidentally modifying engine code that could break the
script.

The MAIN ENGINE code you can leave alone, all of the code you may even want to modify
is pointed at the top of this script, and done as simple and as easy to understand way as
possible. These are "Hooks" within the main code, and give you access without causing
errors (even placing a line of code the wrong order can cause errors, you don't have to
worry about it now, just keep your code here within this subroutine)

With everything in one place, and set and called properly from within the engine, all you
have to do is add your unique table code (Or just leave it the way it is) All
Display/LightSync/ music is run with presets, so you don't even have to worry about that.

From the very startup to the end, all the grunt work and engine stuff is done for you, just add
anything special you want to it. No matter what, you are still going to have to learn some
scripting, but the Beginners Guide even explains that for you.

Most of the code is the same, and any changes here you can make are usually text
messages, music, and timer intervals to set the amount of total time you want each case to
play before it automatically switches off. It really is the easy way to do things.

YOU DON'T HAVE TO CHANGE ANY OF THIS IF YOU DON'T WANT TO!

These are just presets, if you like it the way it is, leave it alone. If you do want to experiment
then this is a great place to do so, as since this is outside the main engine code, you have
a safe place to learn without causing errors to the engine.

(And if you do, let me know)

£ The Basic Structure

Before you open the script, you should understand the basic structure of the script, or for
you beginners out there, the top 10 percent of the script actually. If you have already
opened the script for fpx, and scrolled down, you will see just how big it is (and that's
nothing, if fully developed, the fpxtemplate could be in the 10's of thousands of lines. Aren't
you glad I'm doing it for you?) but really, it's only the top part of the script you ever need to
do. Everything else you can just leave alone, no need to have to wander around in there, it
took me months to write that, and even more time to get it to work properly, and it's very
very easy to mess it up (I would also know that one)

Basically, fpx is divided into 2 main parts, the top part that is intended to be modified or
used by the table developer (that would be you) and the second part, which is the engine
code and should not be touched by anyone, unless you really really know what you are
doing. There will be a engine section in the manual down the road, but the entire concept of
fpx is to make it so you never have to touch the engine code.

So lets talk about the top, where you will actually work within, called the user input section.

The fpx user define is divided into sections, 4 in fact.

© User Input Section

These are the very basic settings. They allow you to change the common pinball table
settings, like how many balls per game you want, how much you want a jackpot to score,
and others. For those of you that own actual pinball tables, consider this is very simple but
very flexible pin settings.

Link

© The Hit Section

This is the actual code for the objects of a pinball game (triggers, bumpers flippers etc) You
have to tell fp what to do when a ball strikes one of these objects (like add points to the
players score, or kick the ball out, play the music etc)

Everything is actually done for you, but you should review it if you want to add your own
custom code down the road. It also starts teaching you the basic principles of code (but as
little as possible)

Link

& Engine Event Section

It may have the word "Engine" in it, but all this section does is allow you to change some
things in the engine, mostly just a different text message you want displayed instead of the
default. People who do code will use this section to add their own custom code instead of
directly in the engine itself.

These Events are "hooks" in the engine scripts, to allow easy access to key areas without
having to go through thousands of lines of script. Even elite coders place things in the
wrong spot, so these are

a pretty fool proof way to add your own code without then spending hours debugging it if it
throws up a error. You will see examples in there, more than likely just lights switching off
that was turned on when

a new ball in play is started.

Link

& fpxEngine Presets

The fpxEngine presets section is for those who wish to add their own custom routines
based around the presets already included with fpx. It's pretty easy to figure out how | did it,
and set it up, everything is the same way, and it's just basically "point and shoot" with
the code. You will find the main controlling subroutine, and the other subroutines for
displaying the text and score (with scrolling), the special effects for lights and bulbs, and
others. There is even a small subroutine so you can easily add more flippers or redefine a
key. There will be of course a very detailed section in this manual down the road.

Link

The rest is the dreaded Engine code, but if you payed attention, | already told you not to
touch unless you are Randy Dawvis.
Free help authoring environment

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.
Single source CHM, PDF, DOC and HTML Help creation

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool

If you have never coded before

If you have never coded before
Beginner's Guide »

i};? If You Have Never Coded Before

Scripting is hard. It's incredibility boring, takes forever to get to work properly, and even
longer than forever to debug the code and test it out hundreds of times. Anyone that sniffs
at you and tells you scripting is easy you should grab their pocket protector from their front
pocket and beat them to death with it.

If you are brand new to scripting (or coding as it is also called) the first thing you are going
to say is

"There is no way | can do this"

Well you can. Most of the writing (75% of it in fact) in this script is in fact me telling you how
to do things. The entire concept of fpx is to take as much coding off your hands, instead, |
have done all that for you, all you need to do is make some very simple changes to what |
have done, but only if you want to. The engine is automated, it will work all by itself if that is
what you want and decide to not touch it at all.

© Script Code

As you may figure out right away once you open the script for the fpxTemplate, lines that
start with a ' are called remarks, and every thing after them on the same line is colored
green.

These are used to explain the code or comments within a script, as messages or the
computer version of Sticky Notes if you look at it that way.

The program when it is running ignores remarks, they are not part of the code, but for our
purposes, they are a great way to teach you and show you examples every step of the way
(Just like 1 am doing this now)

If you remove the ' at the front of any green text, then that becomes part of the code to run
the engine (and it will turn into different colors). We will have a example of that shortly, but
here is a quick example of a remark...

code: ' This is a remark, it is just instructions that you
should read in the script
" Notice the ' in the front? If you delete it, it is

considered a part of the script code.

So, easy enough right? Just read those remarks as you go down the script, as it will help
you change and modify the code to fit your table. The fpx engine is very powerful, even at
this build, but it's actually so simple to use that everyone can use it, even those that have
very little coding experience, or who have never scripted before. There are even remarks
on the same line as computer code, but remarks there has to be AFTER any code as any

code after a remark will be ignored and not run.
& No Really, is it that Easy?

Actually it is. First off, you will have to learn some coding (but down the road) but for the
most part, all you will be doing is changing a number, or replacing some text between the
quotes. Others are just one or two lines of code, and of course, | will not only explain it to
you, but even provide the code so you can just copy and paste it right in.

You should be able to type it in yourself, unless you are a horrible typist like | am...

News and information about help
authoring tools and software

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Create cross-platform Qt Help files

User Input Section

User Input Section
Beginner's Guide »

t@ The User Input Section

So, done playing? Ready to go? Let's start...

Open the script editor (right side menu in FP, says script) and the script editor appears.
This is a very primitive version of notepad, and contains the code for the fpxEngine. If you
have

never scripted before, a quick review of the "If you have never coded before" section may
be in order. It just explains the multiple green lines are in fact just instructions to help you
along

the way.

© Pay Attention to This when you start!!

With coding there has to be certain things that has to be included at the top of the script.
These can not be changed, they must be included no matter what, and can't be moved
somewhere else. THEY HAVE TO BE INCLUDED WITH EVERY VERSION AND TABLE
THAT USES THE fpxTemplate. These are marked as noticeable as possible, just ignore
them and scroll down till you see

code: ' *** END OF DO NOT CHANGE ***

R IR I I I S S kR R I I S I R R R I S S R I I Sk b bk I I I I
R IR I S I S b b b b I I

* *

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

ok User Define Section

ER IR R I S I I S S b I R S R R I S R I I R R R b I I

R IR I S I S b b b b I I

Everything in one place, what a concept....
Lets begin.
*** START HERE ***
" OKAY, NOW YOU CAN CHANGE THINGS, TILL YOU GET TO
THE OPTI ONAL SECTI ON

| guess it's pretty obvious where you start...
© About the User Input Section

This is all the main settings so you can customize your table. Things like the amount of balls
per game, etc. Think of this (in actual arcade pinball terms) as far more advanced "pin
settings".

For the most part, all you need to change is the number at the end of the code (not these
remarks, the multicolored part, or type in a name or text between the quotes (again in the
multicolored part)

But this is also a computer program, and requires a bit more. | will explain everything as we
go along, but if you are unsure about how to change a setting, then don't change it till
someone

writes the manual that can go in far more detail.

Some settings require either a 0 or a 1 at the end. 0 means that feature is turned off, while
1 means that feature is turned off

Some features require a lot higher number as well. Usually that either means a time to set
that afterwards runs another portion of the script, or scores the point total you want.

| will explain each one as we go along, but if you are still unsure, just skip to the next line,
Everything will still work fine

Change the settings to how you want, the engine was designed to be as adjustable as
possible.

Just work from top to bottom, till you get to the part where | tell you to stop, as there is
some more essential code there you can not change. I've divided the user input section into
little groups

to make it easier for you. | will write the default code out, and then tell you what it does and
how to modify or change it.

Q& The First Things to know

Each line is actual computer code. The only things you can change are text WITHIN the
quotes (These things " ") Do not change anything else in that line, and make sure you do
not

delete the quotes. Just change the text inside the 2 quotes. Don't add any more quotes
either, or the script will have a fit, and hold it's breath and turn blue until you change it back

to the way it wants to. Sort of like a few people you might know, some things you just cant
change.

As a example, the very first time you change the text. If you want to change "fpxTemplate" to
"My TableName" then you would change this line:

code: Const const Tabl eNane = " Nane of
the Table. Mke this unique

To This Line:

code: Const const Tabl eNane = " Nane of
the Author. Make this unique

Just the text within the quotes has been changed, nothing else. you will notice the remark at
the end, you can do that after code, and remarks also help you keep track of the code.

& How to change a number

Well in code at least. Lets use nvBallsPerGame as a example. This is part of the main
Future Pinball code, it tells the script how many balls per game a player has. As you can
see, it's set to 3. As with the text explanation above, just change the number, nothing else.
So, if you want instead to have 5 balls instead, then change this line

code: nvBallsPerGane = 3 ' Set Balls per gane
(overrides the Table info, which is very flaky and
usual |y doesn't work anyway)

with this line:

code: nvBallsPerGane = 5 ' Set Balls per gane
(overrides the Table info, which is very flaky and
usual ly doesn't work anyway)

All you do is change the 3 to a 5, and now the fpxEngine will be a 5 ball per game table.
Like above, don't change anything else, just the number!!!!

© The lack of commas

Some lines have a bunch of numbers there. For example " Const fpxReplayl = 320000 "
which means 320,000 to us (it's the first score in points a player has to reach to earn a free
game) You can change that to what you want to, say even 25000000, just don't add any
commas as the script won't like it. We also use this to define the amount of time we want
for a feature to be active (like the Ball Saver) but this time the number is in Milliseconds
and not points (scripts can be confusing sometimes) 1000 milliseconds is one second as
translated to you and me, I discuss this a bit farther down when you reach the ball saver
portion.

Everything is marked in the script, and if you just read what | have said just above this, then
you should be fine. In case you do mess up somehow, I've included a copy of the user input

section at the very bottom, so you can delete the section in the script editor, and just copy
and paste the defaults back in.

3

A Note

Because fpx uses a menu system, and has different "levels" and adjustments built in,
the changes you make here should be considered the default settings when your
table is loaded in for the first time. fpx also has a save/load routine that stores the
settings from the built in table menu automatically, so you don't have to worry about
that.

If you change the settings in the menu, you need to EXIT the table and restart the
table to use the new settings. This is required by the engine, and helps prevent
errors. (or people cheating as well)

* Table adjustments

This controls the main table settings, replays and balls per game

code: Const const Tabl eNane =

This is the actual name of your table for the config file for Load/save values. (unless you
want your table name to be forever called fpxTemplate, which is fine by me.)

Do not add spaces or special characters, keep this one single uninterupted word for now
as this may be used down the road by fpx. Really it just tells people what the name of the
table is.

Remember what | said about changing the text, change ONLY the text, not anything else,
including the quotes. Make sure your text is BETWEEN the 2 quotes, and there are

NO OTHER QUOTES. There should only be 2 quotes, and only text between the quotes.
Leave everything else alone. Do not touch, modify or even stare at it for too long, it doesn't
like it.

code: Const const Aut hor Nane =

Who made it, you can always just give me the credit if you want, but you might just want to
put in your name instead. Again, Text between the quotes only

code: Const constMaxPlayers = 4

Ah, we can change a number now, but we don't need to with this one. This is the maximum
number of players per game (between 1 and 4), and nearly every pinball game in the last
60 years are 4 player games

code: fpxReplayl = 500000

The first point total a player has to reach to score a free game. If your game scores over
this setting (500000 points) then it will automatically award a free game and give you a nice
display and light show. | used this as the example above, remember, just the numbers, no
commas. You can actually set this as high as you want, the engine shows up to 1 billion
points, but don't make the replay too high or people will find it too hard.

code: fpxReplay2 = 75500000

Second Replay award, same as the first really, the default here is set to 750000 points

code: fpxH ghScore = 1250000

This is the High Score award default value. If the High Score is made, the new high score
is saved. Like a actual pinball table, making the high score will award 3 credits (3 free
games)

code: fpxMaxCredits =9

This is the maximum amount of credits a game will allow you to have, usually 15 maximum
with Bally's standard settings, but you can set it to any value. A lot of operators changed this
to 9 so people couldn't rack up 40 plus credits and then leave then there so everyone else
can then use and have 40 free games without paying a cent. Wasn't good for the coin box
revenue.

3

A Special Note

fpx supports 3 ball and 5 ball play, as well as high scores for both 3 and 5 balls.

* Music/System sets

Used to select from one of the multiple music/sound sets. Note the code here matches the
beginning of the sound files name. The engine can support a unlimited amount of music
sets, fpx has included 3 music sets based on era and company. (more are coming soon,
just takes time to make the sounds/code them/test them etc)

Each music set also contains preset pointers to the display for special effects like scrolling
text, and also special routines for the lights using the LightSeq feature within Future pinball.

3

A Note To Coders

You can also use the code within your hit event as well, so you can change music
sets right in game. In fact, if a player gets bored with one music set, he can just
change it to a completely different one any time he wishes. All supported music sets
within fpx can be used by any table at anytime, so you can make a more modern
table sound like a em table.

If you wish to use a different music set, then comment out the active line and un comment
the line you wish to use. In this example, wsys7 is active, just put a apostrophe (') in the
front to turn the line to a remark, and remove the apostrophe from one of the other lines.
Setting the MusicSet to "off" means no music/display text/or lightseg. This is for coders
who wish to put in their own custom code or use their own combination of presets.

code: " MusicSet="Of " " This switches OFF ALL
MJSI C/ DI SPLAY/ LI GHTSEQ routines so you can code all
that yourself

" MusicSet="Bal ly81_" ' Set the
musi c/lightseq/display for Bally 1982 era tables
Musi cSet =" w79 _" " WIllianms system 6 era
Musi cSet = " WIllians System 7 era

You can find out more in the AddMusicSet Page

* BAM settings

note: These are used by the BAM program, so | will explain these in a bit more detail but
the default settings usually work great for most tables so you don't have to change these at
all.

code: xPhysicsXM.=1

This sets the xml physics package you want here. Future Pinball has horrible gameplay and
bad physics built in, so a few years back, the community started to come up with a way to
improve the gameplay physics. When BAM (or Better Arcade Mode) came out, it added a
lot more capabilities and far better physics so FP now plays a lot better. There are tons of
Physics XML files out there, what | did was choose a few that seem to be the best to match
certain types and eras of the actual pinball games. | will be adding more based on support
for new styles, but these are very good general physics setups.

0= No XML(default xml in BAM (NOT TESTED YET))
1=wpc (1990) (BAM Team)

2=Bally 1981 (shiva)

3=DataEast(1985) (GeorgeH)

code: fpxSetBounce=7

Forced Maximum Ball Speed

Though the just above xml files sets the general physics, some people prefer different
settings for how the ball "bounces" off the flipper. Future Pinball has always been pretty bad
at that, the ball really "dies" once it hits the flipper, and it's not very realistic to say the least.
fpxSetBounce sets the amount of "flipper Bounce" from a simple value of 1 to 10, with 1

being the least amount of bounce and 10 being very bouncy. | usually find that 7 is a good
default value for the Bally and Data East games in the 1980's. EM (electromechanical)
games from the 1970 era should be a bit lower, around 4 or 5. Adjust this to your tastes, if
you go over 10 then it won't work at all, but 10 is quite bouncy.

code: xMaxBall Speed = 3500

Set the maximum speed a ball will play. This adds the value to xBAM.BallSpeedLimit that
is part of the BAM code. Sometimes the FP ball just moves too fast, so this stops it from
"speeding”. 3500 is a good starting point, a higher value (like 4000) will mean the ball will
go faster as a max speed, while a lower value (like 3000) means the ball will so slower as a
maximum speed

| recommend that you do not go below 2500 (which is quite slow for a modern game,
though good for a EM game) or higher than 5000 (which is very very fast)

Ball Shadows

New to BAM are a shadowing effect under the ball as it moves around the table. This
feature is built into BAM itself, but is switchable. You can set it to "0" to not have ball
shadows at all, "1" to use the default settings that BAM has for a ball shadow, or "2" which
Is a custom set up for fpxEngine.

code: fpxBallShadows=2
' 0=Ball shadows Off:1=BAM
Default:2 = custom setting

fpxUseShadowMaps

code: fpxUseShadowMaps=1

" Turns On (1) or Off (0) Dynamic

BAM shadow maps

fpxEngine now supports dynamic lighting and shadow effects. This effect adds shadows
based on the light source for posts, targets etc. Because this effect is very "heavy" on a
computer,fpx only uses 4 bulbs (the 4 bulbs used with the slingshots) to generate. People
with old or very slow computers MAY find that even using just 4 bulbs crashes their table, so
this switches the effect on or off. Because of this, we only use the 4 bulbs, 2 at the bottom
(slingshots) and 2 at the top (Header bulbs). Future Vault items MAY add a additional
"bulb” at the top so the effect is better, as well as any flashers also found in a advanced
Vault item. This will be noted in the script and also here in the manual for that vault item.
A Note to coders:

3

* A Note To Coders

XxBAM.RemoveFlippersFromShadowmaps, xBAM.Lights.EnableNewRenderer, and
XBAM.Lights.EnablePostprocessing is set to TRUE. You can find the code by
searching for it in the BAM section.

The defined Bulb Lights for Dynamic Shadows are LeftSlingshotBulb1,
BulbLHead?2", rightslingshotbulbl, and BulbRHead?2

Flipper Omega (Strength of Flippers)

code: const MaxOnega = 50 " Default Max force
for Al flippers. Must be > M nOrega.
const M nOnega = 18 " Default Mn force
for Al flippers Mist be < MaxOrega.

For coders familiar with BAM, this sets how strong and how weak the flippers are when it
shoots a ball. fpx has 2 settings, MinOmega for the flipper to handle slow balls, and
MaxOmega for flippers to handle balls that move faster

The higher the number (value), the stronger the flippers are, The lower the number (value),
the weaker the flippers are

If you don't like how weak the flippers are then change MinOmega to a value higher than the
default setting of 18. (as a example MinOmega = 22) The same with MaxOmega, lower the
default (50) means the shots are weaker and may have problems with the ball going up
ramps, while setting the value higher means the ball moves faster off the flipper.

Some people prefer their own settings, a common one is const MaxOmega = 46, const
MinOmega = 24.

The settings as default are pretty much how I like it for most general tables. The
MaxOmega is good for most ramps, without making the ball move to fast for other areas,
and the MinOmega is the weakest a flipper can fire the ball, and that is pretty good for
lower side items and overall appearance if you "cradle” a ball with your flipper, and then
drop the flipper to shoot the ball somewhere.

More detailed information can be found at the BAM page.
* Debug and menu

There's a built in Debug menu in FP, if you press the F9 key in the editor, it will load the
table and a special debug menu as well. Unfortunately, the help file in FP is not very helpful
about this, and it's really not needed all that much

code: Const constAddDebug = 1

This is a switchable debug text to track things (0 = off 1 = On) You need to press the F9 key
in the editor to start debug table view. This is for my development of the engine. This
creates a text file called fpDebugTextLog in the same place as where your table is, and
lists any debug code that | want in the script. constAddDebug is a special statement, so |
can "divide" the debug system into 2 separate parts and just have displayed the part | want
and not the other. Leave this at 1 to track the subroutine calls and how the script is being
executed. 0 is used more for the reporting side of things, like the version of bam, xml used
etc.

More detailed information can be found at the Debug Page

* Ball Saver

this sets the time for the ball Saver feature to be active when a new ball is fired from the
plunger and enters the playfield to start play. By default, this is set to 10000 milliseconds or

10 seconds (1000 milliseconds = 1 second, 2500 milliseconds = 2.5 seconds) If you put in
"0", the BallSaver feature is switched off.

code: fpxBall SaverTine = 10000

More detailed information can be found at the Ball Saver page

* Extra ball adjustments

code: fpxMaxExtraBall s=1

This sets the limit to amount of extra balls a player can earn per ball. It's set to one, a higher
number may not actually work yet as | haven't even tested it so don't bother changing it for
the time being

code: fpxMaxExtraBall AlternateScore=25000

In case a player already has made a Extra Ball, and scores a second extra ball on the
same ball in play, this instead will give a alternate score in points. Default is 25 thousand
points added to the score, you can change it if you want.

More detailed information can be found at the Extra Ball Page

* Audio settings

You can have background music playing in fpx, there's background music added with each
game style using the era you type for Musi cSet . If you do not want background music to
play, set Pl ayBackgr oundMusic to0

A lot of solid state games had their background sounds increase by frequency (or pitch) as
the player collected bonus (most notably william's games like Black Knight).

If you set BackgroundincreaseFrequency to 1, this will play the background sound at a
slightly higher frequency every time a bonus is made. The frequency will reset back to the
original starting background after every 29 bonus. If you wish to turn off this feature, set
Backgr oundl ncr easeFr equency=0

code: PlayBackgroundMusic =1 "' 0 = off 1=on You can skip
this one, nost people want a background sound.
Backgr oundl ncr easeFrequency=1 ' increases background
musi ¢ frequency as bonus is collected

This sets the master volume. It's script able for more powerful amplifiers in some
computers, or if the music and sound is just too loud for the table. FP has it's own settings,
these settings will override them. You can adjust the numbers to your own tastes, the stock
fpx sounds and music were adjusted to play at the same volume levels, but if your computer
plays music very loudly, you can just set the volume here once you like and then never have
to touch it again. You will find (and quite surprising at that) that you do have to change the
volume with a few tables, and most do not have these settings.

For some reason, it's not 1 to 10 to change the volume, its 0.0 to 1.0

Don't ask me why, | have no idea, it was something the FP dev decided to do, so we are
stuck with it.

code: fpxMaxMisicVolunme = 1. ' Changes the master
volune level for nmusic (0.0 to 1.0)
f pxMaxBackG oundVol unre = .7 ' Changes the naster
vol unme |evel for background nusic (0.0 to 1.0)
f pxSoundVol une = .6 ' Changes the volune

| evel of the nechanical sounds (0.0 to 1.0)

* Jackpot

A lot of pinball games have a jackpot feature, usually for Multiball so fpx has one too. You
only need to set the minimum and maximum values for the jackpot, and there is a second
Jackpot (super jackpot) that takes the present value of the jackpot award and adds a
multiplier to it. To turn of the jackpot, you can set the fpxJackpotmin and fpxJackpotmax
values to 0 (zero) other wise, it's the amount of points you want.

code: fpxJackpotm n = 10000 " moni mum
Jackpot a player can score (In points)
f pxJackpot max = 250000 " Maxi mum Jackpot a
pl ayer can score (In points)
f pxSuper JackpotMul tiplier = 2 " multiples the

exi sting Jackpot score by this multiplier

More detailed information can be found at the Jackpot page
* Mystery
Commonly found on Williams games (Like Black Knight), the mystery feature would give a

random score when made. You can set a minimum and maximum value for the mystery
here.

code: ' Random score between these two val ues
M nMyst er yAwar d=5000 " Mn Mstery
awar d
Myst er yAwar dMaxi um=25000 " Max Mystery
awar d

More detailed information can be found at the Mystery page

* Bonus

This handles the bonus count. You set the Interval (in milliseconds) between each count. If
you have a lot of bonus, or you want the count to speed up between each count, set the
SetTimerCountSpeedUp = 1 and the amount of time you want to decrease the time
between each count, and watch her fly...

If you want the time between each bonus to be the same (like nearly every EM game and all
early solid state games, then just set SetTimerCountSpeedUp = 0 and the engine will
ignore everything else, and just use the same time between each bonus count.

This default settings sets the time between counts at 400 ms (miliseconds)
(SetTimerintervalDecreaseby), and then decreases each time by 20 ms.
(SetTimerintervalDecreaseby)

There's code in the engine bonus timer that prevents the TimerBonus.Interval from going
below 30, or it looks bad.

code: BonusAnmount = 1000

This is the score for each bonus count (usually 1000 pts for modern tables)

code: BonusCount Max = 39

The maximum amount of bonus you want to have in your game. fpx will support up to 159
bonus, and even has custom routines for that, but most EM & Early Solid State pinball
tables had 29, while the games from the 1980's mostly had either 39 or 59. By default, fpx
is set to 39. In the Editor, you have Bonus Lights created for you, do not delete any of them
as this will cause errors during game play. If you keep the setting at 39, then the 40k and
50k light is not used, so it is best you left click on them and drag them to underneath the
apron so they are not visible. If you set the bonus at 40 or over, you will need the 40k light,
and same if you want 50 or more bonus, then leave the 50k light alone.

code: Maxi mumBonusMultiplier =5

Like BonusCountMax, but used for the Bonus Multiplier system. This is the maximum
amount of multipliers you want for your game. The default is 5 (or 5x as you may know it)
but fpx can handle up to 15x, and has it's own automated routines to handle and display it. If
you are at 5x or below (like 4x) you can drag the 1x button to underneath the apron to hide
the light as it is not used, but if you want a bonus multiplier over 5 then you will need it with
the other multiplier light

code: SetTinmerlnterval = 400

The time you want between each count, or the initial time ...by default, this is set for 400
milliseconds as the stock time between each count. It's a good general speed, not too
slow, not too fast

code: SetTi ner Count SpeedUp = 1

If you want the bonus to increase speed with each bonus count and decrease the amount of
time between each count as set by SetTimerintervalDecreaseby just below.(1 = On, 0 = Off
) Setting this to 0 is "EM Style" so it's the same time for each count

code: SetTinmerlnterval Decreaseby = 20

And how much in milliseconds you want to decrease the amount of time for each bonus
count if SetTimerCountSpeedUp = 1. SetTimerInterval sets the initial starting time, and
SetTimerIntervalDecreaseby will decrease it by the amount in milliseconds you set. For
example, using the default examples, when your ball is lost the bonus Count routine will
start up and start counting out the bonus. the first bonus plays, then there is a 400
millisecond delay(SetTimerlInterval) then the second bonus starts, with a 380 ms
(millisecond) delay, the 3rd bonus is a 360 delay, the 4th bonus is a 340 delay and so on.

* Delay at Drain

this sets a delay (in ms) at the drain before the bonus count starts. Just leave this like it is
for the moment

code: fpxBonusDel ayTine = 20

And you are done the first section. The next section is the Hit Code Section, where we tell
the script what to do when a game is in progress, what happens when the ball hits a object
(like a trigger or bumper), the game rules.

Easily create HTML Help documents
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Full-featured EPub generator

User Input Code Copy

User Input Code Copy
Beginner's Guide » User Input Section »

This is a copy of the User Input section, just in case you
need it. Just renove the entire user input section from the
script, and then copy and paste this entire code to restore
the User I nput
" Back to it's default settings

EE R IR b b I I S b R R R I S R R R I I I S b b R R I I I S S b I I
*kkkkkkh*x

* *

* * User Define Section

R e b b S S I S b b e e e S S b i b b b S S R R i i b S b S i S S b S R R I I S S b b b b b b e S S b b b

*kkk*k k%

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/create-epub-ebooks

fpxEngine
" Everything in one place, what a concept....
Lets begin.
" *** START HERE ***
" OKAY, NOW YOU CAN CHANGE THINGS, TILL YOU GET TO THE
OPTI ONAL SECTI ON
" This is all the main settings so you can custom ze your
table. Things like the anount of balls per gane, etc. Think of
this (in actual arcade pinball termns)
' as far nore advanced "pin settings". For the nost part, al
you need to change is the nunber at the end of the code (not
these remarks, the nulticol ored
' part, or type in a nane or text between the quotes (again in
the multicolored part)
" NOTE: To try and prevent a lot of lines of text here
expl aini ng everything, which can be rather excessive and a bit
of a slog to go through (which

" defeats the entire concept of fpx) | have gone into far
greater detail in the manual. Look for the User input section
in the Getting Started chapter, | go

Everything step by step, and even teach you non-coders sone
very basic, mnor things about coding.
' * Table adjustnents
name of your table for the config file for Load/save
val ues.
Const const Tabl eName = '
Nane of the Table. Mke this unique

Const const Aut hor Nane = " who
made it, you can always just give ne the credit if you want
Const const MaxPl ayers = 4 " Maxi mum
nunber of players per ganme (between 1 and 4)

Const fpxReplayl = 320000 " First

replay award
Const f pxRepl ay2
Repl ay award
Const f pxH ghScore = 750000 " High
Score award default value. If the H gh Score is nade, the new
hi gh score is saved.

500000 ' Second

Const fpxMaxCredits =15 " Maxi mum
amount of credits a ganme wll set. usually 15 with Bally, but
you can set it to any value

nvBal | sPerGare = 2 ' Set Balls per

gane (overrides the Table info, which is very flaky and
usual ly doesn't work anyway)

" * Engine Style

" Used to select from one of the mnmultiple nusic/sound sets.
Note the code here matchs the beginning of the sound files
name. The engine

" can support as many different soundsets, but fpx has just
the one so far.

" NO NEED TO CHANGE THI S AT THE MOMENT

29/251

fpxEngine

Musi cSet="OF f _" " This switches OFF ALL
MUSI C/ DI SPLAY/ LI GHTSEQ routines so you can code all that
yoursel f
Musi cSet = " Set the nusic/lightseq/display
" * BAM Physics settings
note: These are used by the BAM program so I will explain

these in a bit nore detail but the default settings usually
work great for nobst tables
so you don't have to change these at all

" Set the xm physics package you want here. 0= No
XM.(default xml in BAM (NOT TESTED YET)) 1=wpc(1990)
2=Bal 1 y(1982) 3=Dat aEast (1985)

xPhysi csXM.=1

f pxSet Bounce=7 set the anmount of "flipper
Bounce". From 1 to 10, with 1 being the slowest and 10 the
f ast est.

xMaxBal | Speed = 3500 ' Set the maxi mum speed a
ball wll play.

" For coders famliar with BAM this sets how strong and how
weak the flippers are when it shoots a ball

" fpx has 2 settings, MnOrega for the flipper to handl e slow
balls, and MaxOrega for flippers to handle balls that nove
faster

const MaxOnega = 50 " Default Max force for Al
flippers. Mist be > M nOnega.
const M nOmega = 18 " Default Mn force for Al

flippers Mist be < MaxQOrega

" * Debug and nenu

" Switchable debug text to track things (0 = off 1 = On) You
need to press the F9 key in the editor to start debug table
Vi ew.

Const const AddDebug = 1
* Ball saver adjustnents
In Modern arcade pinball ganes, if the ball should drain

before a certain tinme, then the gane wll give you a freebie
ball. This is called Ball Saver

" Set in nms (mliseconds} for ballsaver tinme (1000 ns = 1
sec)

Const fpxBall SaverTine = 10000 " this is set to

10000 (10 seconds) by default

" * extra ball adjustnents

" You do know what a extra ball is don't you? You can skip
this one
Const const MaxExtraBal | s=1 ' sets limt to amount

of extra balls a player can earn per bal
Const fpxMaxExtraBal |l Al t er nat eScore=25000 ' Alternate score
in points in case you nax out the anpunt of extra balls wth

30/251

fpxEngine

one ball
* Audio settings

You can play background mnusic, you can skip this one, nopst
peopl e want a background sound
Pl ayBackgroundMusic = 1 " 0 = off 1=on

This sets the naster volune. It's scriptable for nore
powerful anplifiers in sonme conputers. FP has it's own
settings, these will override them

" This is put in because a |lot of people don't adjust their
volunme, so sonetinmes it can be way too |oud

Const fpxMaxMusi cVol une = 1. ' Changes the naster
volunme level for nmusic (0.0 to 1.0)

Const fpxMaxBackG oundVol unme = .7 " Changes the
master volune |evel for the background nusic (0.0 to 1.0)

Const fpxSoundVol une = .6 " Changes the volune

| evel of the nechanical sounds (0.0 to 1.0)

" * Jackpot
Const fpxJackpotmi n = 10000 " mnimum Jackpot a
pl ayer can score (In points) To turn off Jackpot, set both mn
and max values to O
Const fpxJackpot max = 250000 " Maxi mum Jackpot a
pl ayer can score (ln points)
f pxSuper Jackpot Mul tiplier = 2
exi sting Jackpot score by this nultipler

mul tiples the

' * Bonus
This handl es the bonus count. You set the Interval (in
mlliseconds) between each count. If you have a lot of bonus,

or you want the count to speed up

bet ween each count, set the SetTi mer Count SpeedUp = 1 and
the anount of tine you want to decrease the tinme between each
count, and watch her fly...

BonusAnmount = 1000 ' score for each
bonus count (usually 1000 pts for nodern tables)
BonusCount Max = 39 " maxi nrum anount

of bonus (Up to 159 bonus)(EM & Early Solid State had 29,
1980's Bally/WIllians had 39)

Maxi munBonusMul tiplier = 5 " Forced max
anmount of nmultiplier(up to 15x)

Set Ti nerlnterval = 400 " The time you
want between each count, or the initial tine

Set Ti mer Count SpeedUp = 1 " if you want the
bonus to increase speed with each bonus count ...(1 = On, 0 =
Of)

Set Ti mer | nt er val Decr easeby = 20 " and how much in
mlliseconds you want to decrease the anopunt of time for each

bonus count

31/251

fpxEngine

" * Delay at Drain

this sets a delay (in ns) at the drain before the bonus
count starts. Just leave this like it is for the nonent
Const f pxBonusDel ayTi ne = 20
" * Menory System
' REMARKED OUT AT THE MOMENT. | T DOES WORK, it just needs
nore help witten.
" This stores the light state from the previous player ball
to his next ball, even with Miltiplayer. The script takes a
"snap shot" of the lights
" defined here, and renenbers it's state for all players.
Just nmake sure MenorySlot(x) is in nuneric order (1,2,3 etc)
and you have 99 slots(or 99 Ilights)

This exanple just renmenbers the top guide triggers, any

lights "on"™ will be renenbered at the start of that players
next ball.
You can set any light to be "renenbered" and if needed, add
custom code in the AddEvent "New Ball". The engine itself
handl es the rest.
" Set MenorySl ot (1)=LightTriggerQuidel "4

Top trigger | anes.

"Set MenorySl ot (2)=LightTrigger Gui de2
the code automatically handles Light States in the triggers
H t Event

"Set MenorySl ot (3)=Li ght Tri gger Gui de3 " So
we just need to add them to the nenory slots
' Set Menor ySl ot (4) =Li ght Tri gger Gui de4
"Set MenorySl ot (5)=Li ght 20k

NOTE: The nenory system does require coding, its very

advanced it will require very detailed instructions, so for
begi nners just ignore this for the tine being

Create HTML Help, DOC, PDF and print
manuals from 1 single source

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Create cross-platform Qt Help files

Hit Code Section

Hit Code Section
Beginner's Guide »
< q p

{29 Hit Code Section

32/251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

Contents

e Subroutines e AddScore e AddBonus
AddScoringE e Working with Lights e |f/Then
vent e fpx feature examples e Displaying Messages

e AddJackpot
And now, we get to actual computer coding, starting with subroutines

Just a brief explanation before we start. In the previous page the user input section, we just
put in numbers and changed the text, but if you noticed, in direct code. This type of code,
and all the other code in the engine that is "by itself", is run automatically by FP as soon as
you press start in the editor. Subroutines are different, this is code that is only run when you
tell it to, and nearly all of it is completely ignored by FP at the start of a table. (other than
special routines, which is part of the Future Pinball core)

In other words, this is code you have to tell FP to run, and when you want.
© SubRoutines are your friends

Subroutines are actually quite easy to setup. If you look at the first batch of code in the Hit
Section, you will notice they are all quite similar, and all have a common way of doing it.
When [built the script for fpx, one of the things | decided was instead of having multiple
ways of doing coding, and then confusing you by trying to teach you every single method,
instead, | do everything as much as possible just one way, that way it's a lot easier for you
to learn, and once you understand the basic concept, you will be able to understand
everything else because it is just the one way.

Lets take a sample code and show you how it's done...

code: Sub fpxMyTrigger Hit
'sone code....
End Sub

First off, you have to tell FP that this is a subroutine, so you need to type in "Sub" and then
a space.

Right after is "f pxMyTr i gger " . This is the name of the actual object that you place in the
editor. When you create a object in the editor, you also can name the object in the top
righthand side under the options menu. The name of the object in the hit code must match
the name of the object in the editor. (You also can not use that name for any other object in
the editor, all object names must be unique)

right after thatis "_Hi t () " this tells FP what to do if the ball "hits" that object, and will only
run if that object does. Notice that a underscore has to be included, it's a code thing, and
though the 2 brackets are empty, you should add them as habit. | will get to that one in
time....

The second line is the actual code within the subroutine for fpx to run. (This is just a
example, so it's remarked out, it doesn't do anything)

The third line tells the script there's no more instructions within that subroutine. You have to

tell FP the subroutine is finished so that is what the "End Sub" is for. If you don't have a
End Sub to close the subroutine, Future Pinball will throw out a error and refuse to play until
you fix it.

$ AddScore ()

Now you know what a subroutine is, and of course you want to add points to a players
score don't you? That's what AddScore does. You just type AddScore and the two
brackets, and put a number between the brackets that is the points you want to add to the
players score. | included the AddScore right in each subroutine, so you can change it. It's
exactly like the User Input Section, except you have to change the number between 2
brackets (which you do not delete by the way.)

Lets use AddScore to give some points, this time 500 points is added to the players total.

code: AddScore (500)

Now lets use a preset already in fpx, "f pxAdd1000" . This is the name of the actual
object that is in the stock fpx template. You can find it at the top left loop lane, it's a star
trigger and it's very simple code, as all it does is give out 1000 points every time the ball
rolls over it. If you click on the trigger, you will notice the name of the trigger in the very top
box in the options menu on the right side. The name of the object in the hit code must
match the name of the object in the editor. (You also can not use that name for any other
object in the editor, all object names must be unique).

Lets show you the actual code for the trigger, called fpxAdd1000

code: Sub fpxAddl1000 Hit
AddScore (1000)
End Sub

Pretty simple isn't it? Lets show you how to add a bonus

& AddBonus

I'm pretty sure if you have ever played a pinball game, you would know what a Bonus does.
The player collects bonus throughout the ball in play, and then when he loses the ball, the
bonus is counted down and then added to the players score before the next ball starts.
Same thing here, using the AddBonus feature. It's done the same way as AddScore, the

only thing is the number is the amount of bonus you give, and for nearly all occasions, it
should be just 1.

code: AddBonus(1)

Some tables sometimes gave out 3 for the outlanes like the 1970's Ballys

code: AddBonus(3)

Lets show you the built in example to add a bonus. There's another start shaped trigger,

this time at the entrance to the top right loop. Every time a ball rolls over this trigger, it
increases the bonus count by one. Here's the code for that trigger.

code: Sub fpxAddBonus_ Hit
AddBonus (1)
End Sub

That's it. Now again have a look at the first group of subroutines, makes a lot more sense
now doesn't it?

In fact, the first 2 subroutines are all pretty much the same way, just the name of the object
they point to and the middle code that subroutine points to is different. They are all
subroutines, they all run when "hit", and they all have End sub at the last line..

Still, this is the most basic example possible, there's no sound or music even. You will need
to add AddScore(), AddBonus (and AddJackpot, which we will get to a little later) if you
want the player to score points or increase his bonus, but fpx has a lot more to offer than
just that... It's time to get to the magic of fpx, the ability to have complex scoring routines all
by just by copying and pasting a couple lines of code into a subroutine.

& AddScoringEvent is your Best Friend

AddScoringEvent is a special subroutine, and one you will use a lot. You will see it all over
the place, and was designed to have all the scoring features available in fpx in one place,
that you can access with one or two lines of code. All you need to do is write
AddScoringEvent and the feature you want to use typed in between the brackets. In fact,
the next group of subroutines do exactly that, in fact everything in the hit code does exactly
that. So not only is that very easy to use, you can reuse those anytime you want anywhere
you want, and as many times as you want. All you do is quite literally "point and shoot", or
as most of you are likely to do, just copy and paste in the middle between the opening
subroutine line and the closing end subroutine line.

fpx has multiple AddScoringEvents already built in, a lot more will come, and all will work
exactly like that, just one line. Advanced coders will point out that these are presets and can
be limiting, but then, some of the code with AddScoringEvent can be over 50 lines of code.
Even intermediate coders have a lot of problems with code, there's a lot more to scripting
than adding some points and flashing lights, there's things like checking variables
(numbers assigned to script objects in code) checking if the game is in progress, special
instructions if other objects have been hit, tilt state, and many other things. As a beginner, if
you see all that code just for one of the AddScoringEvent features, you just won't want to
touch it or even code that. And | don't blame you, | didn't really want to write it either.

If you are a coder though, well, pretty simple way to add your custom code and/or use the
built in preset routines within fpx. But that's in another section.

Okay? Lets go to the code for the slingshots, it's the simplest ones to use, and we need to
add points to a player's score using AddScore.

You will notice the AddScoringEvent code with text between 2 quotes through the hit
section. This is also a select case subroutine, the text between the quotes is the name of
the CASE, and what we are telling the script is to go to the AddScoringEvent subroutine,
find the case that is typed between the quotes, and run the code just for that case, and

ignore the other cases that is there. It's basically shorthand, instead of typing multiple
subroutines for each piece of code, we can put it all in one place, sort of a huge filing
cabinet drawer, with each case a folder with the name of that case in that drawer, and the
code as pages in that folder.

code: Sub LeftSlingshot Rubber Hit() " The Left
Slingshot has been Hit
AddScor e(10) " Add sonme points. W add

the value in the brackets, in this case 10 points,
to our score

AddScor i ngEvent " Call the
preset routine for bulbs flashing/nusic etc
End Sub

Lets do the right slingshot now. You will notice that the object name has changed, because
we want to run FP when the right slingshot is hit with the ball instead of the left side. But
also, you will notice the middle line has also changed. Instead of "LeftSlingshot" it's now
"RightSlingshot”, as in code, we want to flash the bulbs directly underneath that slingshot,
and since there are 2 pf bulbs under each slingshot, we just want to flash those lights and
not the opposite ones. So we need a routine for each slingshot just for those bulbs, and
that's why we have 2 separate pieces of code, one each for the left side and right side
slingshots.

code: Sub Ri ght Slingshot Rubber Hit () ' The Right
Slingshot has been Hit
AddScor e(10) ' Add sonme points. W add

the value in the brackets, in this case 10 points,
to our score

AddScori ngEvent
End Sub

Most slingshots in the actual arcade tables score just 10 points, so that's what we do here.

& Working with a light or bulb

o If You Have Never Coded Before

We are going to be dealing with working with a light to your table, and also now what
the script needs to do if that light is turned off, or turned on.

| would first recommend that you quickly review the light section in the fp manual first,
as it gives you a lot of very helpful information on some of the settings, and explains
them quite well. Just press the F1 key, or click on "Help" at the top menu in the
editor, and "Open Manual". Go all the way down to "Table Components", click on
that to expand the section, and then select "Lights" and finally "Round Lights" Whew,
it's actually harder to use the help file than it is to use the fpx engine so far isn't it...

For the most part, you don't have to worry about the settings, you will be using a light |

already created for you, but the one part of the help file you should pay the most attention to
for this example is "State". Here, let me copy and paste the part that you will be using...

‘BulbOff - Turns Off the Bulb.
'‘BulbOn - Turns On the Bulb.
'‘BulbBlink - The Bulb will follow 'pattern’ defined by the Blink Pattern field.

Most actual arcade games has a light at each of the inlane/outlane lanes, when that light is
"OFF" then it will score one value, but when that light is "ON" it will score a completely
different value. No matter what you can do, there is still some code you may have to do, so
this is just the easiest way | can think of to show you and teach you how.

Lets start by you going into the editor. On the left hand side, just above the
slingshot/flippers, are 2 lanes, with a red colored light and a white colored light. Put your
mouse cursor over the white light and then click the left mouse button to highlight it. You will
notice the left side of editor changes, and now details that light. The first thing you will
notice is the name of that light (LightLeftinLaneTrigger) Most of the objects you use in FP
have names assigned to them, and those names must be unique (you can't call a second
object the same name as another object, each name must be different from each other.

Scroll down that left hand side menu (called Options in the editor by the way) and you will
see the State is set to "BulbOff". (don't worry about the 2 additional settings below, we will
get to that down the road) This tells the script the bulb is turned OFF at the very start. We
can do this in the code as well, so if we want that light to be OFF, or switched OFF, we type
in this:

code: LightLeftlnLaneTrigger.State = Bul bOn

Lets break that single line of code into 3 parts to make it easier to understand.

LightLeftinLaneTrigger

- is the name of the light, and should be exactly the same as the name of the light in the
editor. 9 times out of ten, if a light doesn't work, it's because the name is not right in your
code and doesn't match exactly the name in the actual editor. (it's okay, | do that one
multiple times a day myself)

State =
- This tells FP You want to change or set the light bulb. you need the period and the
equal sign in this part, it's a coding thing....
BulbOn
- | guess when the person who coded FP, he decided to be REAL accurate, and called
it by bulbs. Whatever, as you can tell by now, BulbOn means Turn on the light

Okay, pretty easy so far, lets give you the code for turning off that same light

code: LightLeftlnLaneTrigger.State = Bul bOf

So instead of "BulbOn", it's now "BulbOff" to turn off the light. Lets test it out...

At the left of the table, there's a second group of Triggers, more at the middle. The first one

is called TriggerinlaneOn. Drag the trigger to the table to turn the Inlane Lights ON and look
at the code just below.

code: Sub TriggerlnlaneOn_Hit()
Li ght Left I nLaneTri ggerState = Bul bOn
Li ght Ri ght I nLaneTriggerState = Bul bOn
AddScor g 500) ' W add the value in the
brackets, 10 points, to our score
AddScor i ngEvent
End Sub

You see we were a bit more generous with the score and gave the player 500 points to add
to his score.

TriggerOutlaneOn is the second trigger in the middle group, so drag it to the table, and
when the ball roll overs it, the outlane lights will turn on. You can see the difference in the
name of the lights, and in the editor and in the game, they are colored red, which is
traditionally what the lights are colored to score a special or free Game.

But here is also a very good place to add another line of code that you will use quite a bit,
the AddBonus()

A lot of tables would give out bonuses for targets lanes etc as well, so you get the idea.
Lets add one bonus to the trigger that turns on the Outlanes

code: Sub TriggerQutlaneOn_Hit ()
Li ght Left Qut LaneTri ggeB6tate = Bul bOn
Li ght Ri ght Qut LaneTri gge$tate = Bul bOn

AddScor ¢ 500) " Add sone points.
a bit nore than before

AddBonus (1) ' Add to the Bonus
Count when the ball is |ost

AddScor i ngEvent " did you

know you can mx and match AddScoringEvents?
This adds a "pronpt" nessage to |let player know
a special is |it.
Messagél) = - Message(2) =
- Message(3) = - Message(4) = " Add
Messages for the display
AddScor i ngEvent
Tell Player a special can be collected
End Sub

You will notice another AddScoringEvent (AddScor i ngEvent).

This is a simple "prompt" message you can add to tell the player that a special has been lit
and can be collected. This uses Messages, we will discuss this a bit further down, but what
this does it allow you to add custom messages in your display when ever the player makes
a certain feature or goal.

& Doing 2 scores at once

So far it's pretty simple. Not too much, and | have been adding one thing at a time with
each example. But it's also very common to have a trigger or other feature with a Light

assigned to it, and that usually means there's two separate scores, one for when the light is
"off", and another score for when the light is "On". Which we do have with the inlanes, and
the outlanes, you can see those lights "Turn On" when the ball rolls over the 2 triggers we
just discussed (TriggerinlaneOn and TriggerOutlaneOn)

Since we have 2 sets of scoring to do (one for the light being off, and a second for the light

being on), we can do this as simply as possible by just having the script look for the state of
the bulb (on or off) and then handle what to do. So, when we need to add the code, we use

what is referred to as a IF THEN statement.

© IF/THEN

IF/THEN are very useful, you just tell the script to look at something, and IF it's true,

THEN you tell it what to do. Once you add the code, you have to add END IF so the script
knows that is all you want for it to do if that bulb is not lit. Then, you do the same thing thing,
but if the bulb is lit. With most earlier games, it's usually a different higher score and a
bonus added. Lets do that with the left inlane...

code: ' Return lane to left flipper
Sub LeftlnLaneTrigger Hit()
| F LightLeftlnLaneTrigger. State=Bul bOFf THEN

Look to see if light assigned is off first

AddScor g 500)

AddScori ngEvent ' G to
routine for nusic etc
END | F " I'"'mfinished telling you what to
do if the bulb is off
" If the bulb is lit, lets reward the player with a

better score
| F LightLeftlnLaneTri gger. St at e=Bul bOn THEN

Look to see if light assigned is on first
AddScori ngEvent ' G to
routine for nusic etc
END | F " I'"'mfinished telling you what to
do if the bulb is on
End Sub

Okay, lets do the right inlane now...

code: ' Return lane to left flipper
Sub Ri ghtlnLaneTrigger_Hit()
| F Li ght Ri ghtl nLaneTri gger. St ate=Bul bOFf THEN '

Look to see if light assigned is off first

AddScor i ngEvent ' G0 to
routine for nusic etc

END | F " I"'mfinished telling you what to
do if the bulb is off

If the bulb is |lit, lets reward the player with a

better score

| F Li ght Ri ght I nLaneTri gger. St at e=Bul bOn THEN

Look to see if light assigned is on first
AddScori ngEvent ' G to
routine for nusic etc
END | F " I'"'mfinished telling you what to
do if the bulb is on
End Sub

As you can see, we just need to change the name of the trigger (as we have 2 inlanes), and
also the name of the light above it (as we have a light for each inlane). The code itself is the
same.

The IF/THEN statement within your code is a very powerful tool for your coding, if you look
at my main code, you will see | use it a lot. There are other statements you can use with
IF/THEN (Like the ELSE statement) but that's another time and it's really not needed at the
moment.

Now, lets do the outlanes. The code is the same way as the inlanes, we just want it to score
a bit differently is all. Bally games usually give you a higher score, sometimes gives you
more bonus to add to the bonus count (3 bonus sometimes) and also gives you a free
game if the outlane lights are lit.

When you look at the code, you will notice a few things

- We now score a special if the outlane light is lit. It's the exact same code as the
fpxSpecial_Hit() trigger (AddScor i ngEvent) but we have to remember to
switch that light off and the other outlane light or it will just keep scoring specials every time
(which I do for you anyway) This is a very common feature, so | made it a standard feature
within AddScoringEvent

TriggerOutlaneOn is the second trigger in the middle group, so drag it to the table, and
when the ball roll overs it, the outlane lights will turn on

code: Sub TriggerQutlaneOn_Hit ()
Li ght Left Qut LaneTri ggeBGtate = Bul bOn
Li ght Ri ght Qut LaneTri gge$t ate = Bul bOn
AddScor ¢ 500)
' Add some points. a bit nore than before
AddBonus (1)
Add to the Bonus Count when the ball is |ost
AddScor i ngEvent
did you know you can m x and match
AddScori ngEvent s?
' This adds a "pronpt" nessage to let player know
a special is |it.
Messagél) = - Message(2) =
- Message(3) = - Message(4) = " Add
Messages for the display
AddScor i ngEvent
Tell Player a special can be
col |l ected
End Sub

It is pretty much the same way as the Inlanes, the actual code is similar.
There is one more bit of code added though to this subroutine, the AddJackpot()
$ AddJackpot

It's a pretty common feature now days, so really no need to explain it. What

AddJackpot does is just add to the Jackpot, and it works exactly like AddScore does. Just
type in the amount of points you want to add to the Jackpot that the player has to collect
with the number between the 2 brackets. In fact, in the example triggers fpxJackpot_Hit
collects the jackpot and fpxSuperJackpot collects the super Jackpot (which is the Jackpot
times the multiplier amount you already set in the user input section)
(fpxSuperJackpotMultiplier if you had forgotten)

Lets do that code for the Outlanes. You will notice AddJackpot is there now. If you want to

do your first piece of modification to code, you can add the AddJackpot code to the inlanes
yourself.

code: Sub LeftQutLaneTrigger Hit()

The Left QutLane trigger has been Hit
I F Li ght Left Qut LaneTri gger. St at e=Bul bO'f THEN

Look to see if light assigned is off first
AddScor g 3000) " add sone points
AddJackpot(3000) ' Adds to Jackpot total
AddBonug 1) ' adds to Bonus score
AddScor i ngEvent " run

routine for nusic etc

END | F

| F Li ght Left Qut LaneTri gger. St at e=Bul bOn THEN

Look to see if light assigned is off first
AddScor g 5000) ' add sone points
AddJackpot(5000) ' Adds to Jackpot total
AddBonug 1) ' adds to Bonus score

AddScor i ngEvent
Automatically Awards Special.
End I f
End Sub
Sub Ri ght Qut LaneTrigger Hit() " The Right
Qut Lane trigger has been Hit
| F Li ght Ri ght Qut LaneTri gger. St ate=Bul bOF'f THEN

Look to see if light assigned is off first
AddScor g 3000) ' add sone points
AddJackpot(3000) ' Adds to Jackpot total
AddBonug(1) ' adds to Bonus score
AddScor i ngEvent " run

routine for nusic etc

END | F

| F Li ght Ri ght Qut LaneTri gger. St at e=Bul bOn THEN '
Look to see if light assigned is off first

AddScor g 5000) " add sone points
AddJackpot(5000) ' Adds to Jackpot total
AddBonug(1) ' adds to Bonus score
AddScori ngEvent '

Automatically Awards Special.

End I f

End Sub

One thing, If you turn these Inlane and Outlane lights on, they will just stay on until you exit
the game. Why? Because we didn't tell the script to turn off the lights when a player loses a
ball, so, there is a bit more code where we turn these lights back off at the start of each new
ball in play. We will show you how to do in in the Event Section and discuss how we do it
there. For you coders, it's in the AddEvent subroutine, and the "NEW_BALL" case.
"NEW_BALL" is where you put in all your code for the start of each ball, turn off lights, reset
some things, pop up targets etc.

© The built in fpx feature examples

To the left of the table there's groups of triggers. These are the examples | have put in to
show off each of the main AddScoringEvent features. At the top is a group of triggers for
each of the examples I give here. | would suggest reading up on triggers in the FP Help
manual (under Table Components) first. There are several types of triggers available in FP,
but | use the Trigger-Star ones here (the funny looking star shaped objects)

Just click on each trigger, note the name of the trigger, and then look at the code for that

trigger to see what feature AddScoringEvent uses. If you want to see the trigger in actual

game play, just click on that trigger, and while holding down the left mouse button, drag it

right on to the table. Place it so the ball will roll over it (you should see a pretty good place
to put it so the ball will only rollover once) and then press play and watch...

Because AddScoringEvent will be so huge down the road, it's best it has_it's own section,
as some will require certain objects to be placed and named correctly, and also coders will
want not just the info on AddScoringEvent, but the presets for the display and lightSeq
routines information. If you are a beginner, that one line of code is pretty easy to figure out,
because | was as descriptive as possible with the naming. It's pretty obvious if you test out
each trigger in gameplay as well...

So now we come to the final bit of code for the hit section, a small selection of the presets
like extra ball and specials. If you had played with the triggers, or just ran the table, you will
have noticed that the 4 displays have blinking/flashing text to highlight certain features. fpx
has the ability to add custom "messages"”, those are text messages that the display will
show especially if you score something big like a extra ball. You will see these type of
messages all the time, and | am pretty sure you may want to learn how to do that and even
change some of them.

© Displaying Messages
You may have noticed in f pxAddMul tiplier_Ht thisline...

code: Message(1)= - Message(2) =

This allows you to display messages instead of the players score in each of the 4 displays.
You will notice it's used for a lot of things, like when the player makes a extra Ball, wins a
game, you know, the exciting stuff. It's also used a lot by the engine, you will notice the
Message(x) code lines in a lot of areas, from table power up to the match routines.
AddEngineEvent gives you access so you can place your code directly into the engine, but
it also gives you some things you can change to suit you.

Message(x) are the text messages that are displayed in the display when you are playing a
game. There are 4 displays, so there are 4 messages you have to use. (and the 4 HUD
displays as well that match the displays in the translight) So, Message(1)=Playerl display,
Message(2)=player 2 display and so on.

The things you need to remember

e Only change the text message that is between the quotes (*). Do not delete or change
anything else. Because there are 9 digits in each display, your words should be no
more than 9 characters long. Any lowercase letters you add will show when you are
playing a game, but as Upper Case letters, This is normal for non-dmd games.

e Even though you have 4 displays, each display can only display 9 characters at any
time.

e Some areas you only have 1 message (like the tilt) to do, others 2 messages, but
most are 4 messages.

e Sometimes, Message(3) and Message(4) will have quotes with nothing between
them.This means that Display 3 and Display 4 will show completely blank while in
game. You can add messages if you want, | just like how it looks.

You can leave it alone if you like, the engine is quite happy to run the defaults I typed
into it, but if you do, it's very simple... as a example, using Message(2), if you want to
change the Engine text to the word Template then, remove the word Engine from
between the quotes

and then type Template instead between the quotes. So your code for the Message(2)
line should look from this:

code: Message(2)=

To this:

code: Message(2)=

Now, lets show you another example using f pxAddMul ti pl i er . You will see this code
there:

code: Sub fpxAddMultiplier Ht()
Message(1) = - Message(2) =
AddScor i ngEvent
End Sub

You can change both messages to what you want. Suppose you want to call "Bonus Multi"
to something like "Double Bonus" . You can do so, just replace the words with in the quotes
with what you want. Here's a example that shows the difference for that

fpxEngine

code: Sub fpxAddMultiplier_ Hit()
Message(1) = - Message(2) =
AddScor i ngEvent
End Sub

If you notice, there are some spaces within the quotes. These allow the messages to be
"centered" in each of the display, which looks a lot nicer than text being "glued"” from the
right of the display. Unfortunately, there is no way to change the alignment of the displays in
the code. Once you set the text alignment in the editor for the translight and HUD displays,
it stays set that way.

Here's the code for the triggers. It's pretty much self explanatory if you read the remarks
included.

code: Sub fpxBall Saver_Hit() " Relights
Bal | Saver
NOTE: There is no Message code or nusic for Ball
Saver, as it's used in different ways by the engine.
AddScori ngEvent
End Sub
Sub fpxAddMultiplier Hit() ' Adds a
Bonus Multiplier (2x, 3x etc)
" NOTE: There are only 2 nessages needed. The
engine will add the Super Jackpot value in the other
two nessages (in Display/ HUD 3 and 4)
Message(1) = - Message(2) =
AddScor i ngEvent
End Sub
Sub fpxJackpot Hit () " Scores a
j ackpot
" NOTE: There are only 2 nessages needed. The
engine will add the Jackpot value in the other two
messages (in Display/ HUD 3 and 4)
Message(1) =
Message(3) =
AddScor i ngEvent
End Sub
Sub f pxSuperJackpot Hit() ' Scores
Super Jackpot (Jackpot x fpxSuperJackpotMiltiplier)
" NOTE: There are only 2 nessages needed. The
engine wll add the Super Jackpot value in the other
two nmessages (in Display/ HUD 3 and 4)
Message(1) =
Message(2) =
AddScor i ngEvent
End Sub
Sub fpxExtraBall _Ht() " Scores
Extra Ball
Message(1) =
Message(2) =

441251

Message(3) =

Message(4) =

AddScori ngEvent
End Sub
Sub fpxSpecial Hit() " Scores a
free gane

Message(1) =

Message(2) =

Message(3) =

Message(4) =

AddScor i ngEvent
End Sub
Sub fpxMystery Hit() " Mystery Award (Bl ack
Kni ght)

" NOTE: There are only 2 nessages needed. The
engine will add the Mystery value in the other two
nessages (in Display/ HUD 3 and 4)

Message(1) =

Message(2) =

AddScor i ngEvent
End Sub

And now you know how to change the message display for not only this part, but all the
other parts as well. You don't have to change any messages if you don't want to .

Well, you are done this section now. | wrote this manual with build 1.3, | can assure you
there will be a lot more scoring features, and all will be done like this. This page may have
been very long to go through, but there is only one more page left, the Events Section.
(Don't worry, this one is quite a bit shorter)

Free Kindle producer
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Generate Kindle eBooks with ease

Event Section

Event Section
Beginner's Guide »

{‘Q The Event Section

Events are "hooks" in the engine scripts, to allow easy access to key areas without having
to go through thousands of lines of script. Even elite coders place things in the wrong spot,
so these are pretty fool proof way to add your own code without then spending hours
debugging it if it throws up a error.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

& AddKeyEvent

Future Pinball has two subroutines for controlling keypress while in game. The problem with
what most people have is finding the right place to put in custom keys (like adding a third
flipper) without getting errors. To compound the problem, some things (like the code for the
start key) has multiple routines, so it can be a long frustrating experience.

AddKeyEvent solves this problem, by using a concept called "Hooks". These are a special
code that is inserted in the main code, that allows you to add additional code directly to the
keys section in Future Pinball. All you have to do is add your code here for flippers/special
keys hud etc.

For beginners it's best to just leave this alone for the time being, | have already done this
for you.

It should be noted that in game, you use the default keys as set in the top Preferences
menu in the editor, but some keys may not work if you use BAM, as some default FP keys
are being used by BAM. You may have to change the following keys...

e HUD On/Off (usually the " tilthe key(directly below the esc key)
e Pause (usually the "P" key)

FP has a manual (Help right at the top when clicked opens up the manual) that
explains the keys. You can find the portion that describes how to change the key by
clicking the Preferences chapter on the left of the manual (almost at the bottom) and
then Game Keys and Controls.

Here's a copy (build 1.1) of the AddKeyEvent. Notice the new code called Select
Case? | use this as much as possible, because it's very flexible, you can add on to it
easily, and very straightforward. There are so many ways to do coding, but all you
need to do is learn one way, and this is the way. | will discuss the Case code just
below this...

code: Sub AddKeyEvent (KeyEvent Vari abl e)

Sel ect Case KeyEvent Vari abl e
case

Left Fl i pperSol enoi dOn

Pl ay Sound , (f pxSoundVol une)
case

Left Fl i pperSol enoi dOF f

Pl ay Sound , (f pxSoundVol ume)
case

Ri ght Fl i pperSol enoi dOn

Pl ay Sound , (f pxSoundVol une)
case

Ri ght Fl i pperSol enoi dOF f

Pl ay Sound , (f pxSoundVol ume)
case
case
case
case

case
case
case
End Sel ect
End Sub

£ The One Way - Select Case

Okay a brief primer.

You will notice the AddScoringEvent code with text between 2 quotes through the hit
section. This is also a select case subroutine, the text between the quotes is the name of
the CASE, and what we are telling the script is to go to the AddScoringEvent subroutine,
find the case that is typed between the quotes, and run the code just for that case, and
ignore the other cases that is there. It's basically shorthand, instead of typing multiple
subroutines for each piece of code, we can put it all in one place, sort of a huge filing
cabinet drawer, with each case a folder with the name of that case in that drawer, and the
code as pages in that folder.

Lets do a example using a downsized version of AddKeyEvent

code: Sub AddKeyEvent (KeyEvent Vari abl e)
Sel ect Case KeyEvent Vari abl e
case
case
and so on....
End Sel ect
End Sub

code: Sub AddKeyEvent (KeyEvent Vari abl e)
Sel ect Case KeyEvent Vari abl e
case
End Sel ect
End Sub

We tell the script to go to AddKeyEvent, look for the "LEFTFLIPPER-PRESSED" case,
and run the code only that's in the "LEFTFLIPPER-PRESSED" case, and ignore the other

case settings and it's code. So, the script will look at case "LEFTFLIPPER-PRESSED"
and will run this

code: LeftFlipper. Sol enoi dOn
Pl aySound , (f pxSoundVol une)

so it should look like this

code: Sub AddKeyEvent (KeyEvent Vari abl e)
Sel ect Case KeyEvent Vari abl e
case

Left Fl i pper. Sol enoi dOn

Pl aySound , (f pxSoundVol ume)
End Sel ect
End Sub

It doesn't run anything else, just the code placed in "LEFTFLIPPER-PRESSED". You will
notice other case settings have code with them, what happens when the left flipper is
released, and also what happens if the Right flipper key is press, and released as well.

Hope you understand this, if you do, good, because everything is based around using the
case code, and now you have the concept, you can now do some very cool things just with
one line of code.

& AddEngineEvent
Next (and the last one) is AddEngineEvent. If you read above, | talk about "hooks" which is

code within the main engine that points to a subroutine with case settings. All those hooks
point to AddEngineEvent.

AddEngineEvent handles all of the main engine features. This is where you can customize
the engine (display/music/Lightseq etc) without having to search through thousands of lines
of code by dipping into the main engine code.and also not worry about breaking the engine
if you do something wrong. Only the most advanced scripters should modify the actual
engine code.

About 95% of everything anyone would want to change (sound/lights/display etc) has been
placed here and is heavily commented, so it should be very easy to follow and change.

Here's the list of the main places you can insert code using just the AddEngineEvents,
though you can change anything you want

e "INITIALIZE" - The opening variables and code you want to execute as soon as the
table loads from the editor.

e "LIGHTATTRACTSCORE" - the very start of the Light attract.
"LIGHTATTRACTL1" - One of the routines for the LightAttract displays text in the 4
displays that give the game name and the author. You can change this to your table
name

e "START_GAME" - The first thing does when a player starts a game. Like
LightAttractl, you may want to change the messages in there

e "NEW_BALL" - This is all the code you want to run at the start of a game and every
ball in that game. You will see the code for the template example here, that resets
lights/targets etc.

e "TILT" - The code for the objects you want to switch off in case the table is tilted. Just
the flippers are here as a example

e "MATCHSTART" - This is the place to put "closing” code if you need it, and is run just
before the match routine starts.

O New Ball

Just a little section on this, this is where coders would put their custom code for the start of
a new ball. Remember those Inlane and Outlane lights we did in The Hit Code Section? |

mentioned we needed to turn off those lights or they will stay on forever, so this is where
that code was placed.

code: case
" THIS | S WHERE YOU ADD YOUR CODE FOR THE START OF
EACH BALL !'!!!
Use this to turn on any lights, reset any

vari abl es you use, popup targets etc.

this switches off the lights used in the Inlanes
and Qutl anes
Li ght Left 1 nLaneTri gger. St at e=Bul bOf f
Li ght Ri ght | nLaneTri gger. St at e=Bul bOF f
Li ght Lef t Qut LaneTri gger. St at e=Bul bOf f
Li ght R ght Qut LaneTri gger. St at e=Bul bCf f

O Tilt

Here's another area for coders, what to do if the game is "tilted". If you scroll down a bit
more, you will see Case "TILT". The engine will switch off pretty much everything (including
the scoring code built into the engine) but we need to disable the flippers as well, so here's
the code already there:

code: case
TH'S IS WVHERE YOU ADD YOUR CODE FOR WHEN THE GAME
TILTS 11!
Use this to turn off things, like the flippers
bel ow.
Left Fl i pper. Sol enoi dO f
Ri ght Fl i pper. Sol enoi dOFf ' Can't forget to turn
t hese off,

You can change what you want for messages, as you scroll down, you will see the same
message code for those triggers we used for examples of AddScoringEvent.

Yes you are done. There's presets and optional coding, but if you have no coding
experience, you wouldn't want to change that anyway. If you are looking for something to do
still, just go to the next page

Produce online help for Qt applications
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easily create EBooks

fpxEngine System Features

Using the fpxEngine system features

Imdonenowwhat.htm
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour

i;'? Using the fpx System Features

(This page still in progress)

0 List of keys used

fpXEngine uses the keys defined in your editor. (In the top Editor, under
Preferences/Game Key and Controls)

There are several keys used by fpxEngine though, so here's a list of the keys
e Special2 Key - (usually the ' key set as default) Opens menu system

e H key - HUD display visable/hidden

As well, there are Debug keys using the number pad. you need to start the game by

pressing the F9 key from the editor to enter debug mode.

e Numberpad O - Debug Main Menu

e Numberpad 1 - User settings. This writes a copy of the User Input Section. Handy
to keep track of variables, or to make a copy of any fpxEngine table settings to
use in your table. Just delete your user input section, and paste in the new code.
This is written in code in fpDebugTextLog

e Numberpad 5 - Bam settings. All BAM variables used by fpxEngine are written
here.

This section details all of the features of the fpxEngine. This engine was written to give you
as the table creator a very powerful and flexible system while being as easy to use as
possible.

Free iPhone documentation generator

The Table Menu
The Table Menu

(‘"0' The Table Menu
LY

All fpxEngine tables now have a menu system included that allows for easy adjustment
of settings. This menu (new in version beta 1.2) will allow the player to set the number of
balls per game,reset the high score, and adjust other settings. As the fpxEngine
matures, more settings will be included within the menu, such as BAM (Better Arcade
Mode) physics settings, and dynamic lighting presets.

The menu will automatically display at the start of a table being loaded in from the
editor, and will fade out after a few seconds.

The player can press the "Speciall” key (usually the ' key) to display the menu anytime,
and use the flipper keys to adjust the settings.

https://www.helpndoc.com/feature-tour/iphone-website-generation

The "H" key will turn on or off the HUD display, which allows the player to see the
display in desktop mode.

e You need to save the table and exit if you want any changes to the high score or the
replay values (prevents cheating)

e The left flipper will go to the next option (or page) while the right flipper changes the
options for that page.

e To exit out of the menu, press the "Speciall” key a second time.

e The settings in the menu will always overwrite any settings in the user input section.
Settings in that section are the default values for when the table is started for the first
time.

e The menu system will save any changes you want when you exit the table to return to
the editor (esc. key)

£ The Menu Options

The menu system will be expanded as time goes on, so also check this page whenever a
new beta or version is released. These are the options available to the player in table
mode

Balls per Game

The player selects either a 3 ball or 5 ball game. Note that the engine will adjust the replay
goals and the high score automatically depending on the amount of balls, and also the
difficulty level selected. fpxReplayl,fpxReplay2 and fpxHighScore, which you set in the user
input section, are the base numbers for the fpxEngine default and are for 3 ball play. If a
player selects 5 ball play. the engine will add a additional score to these values to make the
game fairer, and also for a future feature planned for the fpxEngine. The difficulty setting will
either decrease the scores needed to win a free game (easy) or increase that score (hard).
This is very similar to a common feature in pinball games, and is meant to simulate the
"pin-settings” that are adjusted by the operater.

Balls per game can not be changed while in game, the player must exit the table and then
reload the table from the editor to make these settings work.

The Engine will automatically show the replay goals in the display when the table is in Light
Attract mode.

Scrolling.

Some players use a view that scrolls the playfield with the ball, but don't like the effect, just
the general views. This creates a alternative view, that is more locked down towards the
bottom of the table and prevents FP from scrolling the playfield with the ball.

Difficulty

Select able as either easy, normal, and hard. At the moment, this only affects the replay
goals as set in the user input section, (as written in "balls per Game" directly above) but
future releases will add more features and functionality to these settings.

Plunger arrows

Most FP games use the "enter" key to fire the ball from the plunger, but it also makes exact
shots with perfect weight pretty tough to do, especially for skill shots. setting this to "use
arrow keys" allows you to use the UP and DOWN arrow keys instead, ad then press the
ENTER key to release the plunger.

High Score to Date

This resets and clears the high score list (and players names) back to it's initial default
values of when the table is loaded in for the very first time.

€ Changing The High Score Defaults

This uses the BAM high score list feature. When a player gets a high score, BAM
bypasses the stock FP high score list.

- To change the high score list search for this line InitHighScoreEntry().

- nvS1 = "fpxenginefpx " is the names for the high score for 5 ball play. The first 3
characters ("fpx") is the initials for the first high score, the next 3 initials ("eng") is the initials
for the second high score and so on.

- nvS2 are the default high score values for 5 ball play. (4 in total)

- nvS5 are the initials for 3 ball play (just like nvS1)

- nvS6 are the default high score values for 3 ball play

Note: The entire high Score routine may be replaced down the road, as it's quite confusing
to most people, and a bit unwieldy. It is my recommendation that you just leave it alone.

Free EPub and documentation
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Generate Kindle eBooks with ease

Custom Balls

Custom Balls

i;'g Custom Ball Example

?

A Note To Coders

To use this feature search for Const fpxBallBlinkingOn =

This is turned off by default. (Const fpxBallBlinkingOn = 0)

To turn this feature on, change Const fpxBallBlinkingOn =0 to Const
fpxBallBlinkingOn = 1

Built in fpxEngine are several examples for additional capabilities of BAM, though they may
not be actually folded into the engine. As BAM is being developed, Ravacade has done

https://www.helpndoc.com
https://www.helpndoc.com
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

several examples to demonstrate various features, so they have been folded in fpx. All the
code has been placed in, you just need to "turn it on" to see how it works. Also included in
this page are the complete explanations as written by rav that | have rewritten in places to
make it a bit easier to understand.

Also included is all the scrip table code for the custom ball feature within BAM below this
example.

To see this example in action, search for and change: Const f pxBal | Bl i nki ngOn
=1

This example will start each ball as red and blinking (for the time set in

f pxBLi nkDur ati on) and also when the ball hits the slingshots will "flash" a different
color.

The demo table done by ravacade can be found here:
http://www.ravarcade.pl/beta/ballDemo9.fpt

This code is found at the top of the "presets” section, this are the settings you can use to
adjust the effect. f pxBl i nkl nt erval and f pxBl i nkDur at i on are for adjusting the
blinking ball effect when a ball is released into the trough area, as well as the total amount
of time you want the ball to be red (in seconds, 15 is default) while f pxFl ashDur at i on
controls the amount of time the ball will change color when it strikes the slings.

code: ' (page 192 bam main thread gopinball.comnm
pl ease see code in RightSlingshot hit and
LeftSlingshot_hit for exanple

Const fpxBallBlinkingOn = 0 " Turns on (1) or
Of (0) ball blinking and color changing at sling
hit.

Const fpxBlinklnterval = 0.5 " ball blinks for
tinme specified

Const fpxBLi nkDuration = 15.0 " ball is colored

red at new ball for tinme specified
Const fpxFlashDuration = 0.2 " Ball flash color
for time specified

The main code is found in the BAM section of the engine, also in the presets section.

code:

Options to control this effect are at top of the
mai n optional section
" controls ball blinking effect
Sub BlinkBalls(ball)

Dm a

| F fpxBallBlinkingOn = 1 THEN * Check if
ball blinking feature is on

If ball.ExtTimerl > 0.0 Then " ExtTinerl

is not 0.0 when it is started after ball creation
If ball.ExtTimerl > fpxBLinkDuration Then

http://www.ravarcade.pl/beta/ballDemo9.fpt

bal |. UpdateBal | 192, 192, 192

ball. Qpacity = 1.0

bal |. St opExt Ti ner 1
El se

a = ball . ExtTinmerl / fpxBlinklnterval
a =(a- CLng(a)) * 2.0

If a < 0 Then a = -a

bal |. UpdateBall 60 + Clint(192*a), 60, 60
End |f
End If

' This changes the color of the ball during a
slingshot hit
If ball.ExtTimer2 > 0.0 Then
If ball.ExtTinmer2 > fpxFlashDuration Then
bal |. St opExt Ti mer 2
bal |. UpdateBal I 192, 192, 192
El se
Sel ect case ball.ExtInt2
case 1 'green
bal |I. UpdateBal | 60, 255, 60
case 2 'blue
bal |I. UpdateBal | 60, 60, 255

case el se
bal I. UpdateBal | 255, 255, 255
End Sel ect
End |f
End | f
END | F
End Sub

calls ball blinking effect for ALL balls
Sub Dr awFr anmeTi ck()
xBAMEnunBal | s 100, O,
End Sub
" creates custonball as opposed to stock fp ball
Sub CreateCustonBall (source)
D m bi
Set bi = xBAM Bal | Manager . Cr eat Cust onBal | (0)
Sour ceCr eat eBal |
bi . Red, bi.Geen, bi.Blue, bi.BallNunber
End Sub

Sub BlinkBalls(ball)
The first part of this subroutine makes the ball blink for 15 second after ball creation:

So, in first "If" we check if ExtTimerl is still running. If so, we check if that 15 seconds
passed.... If, so set ball color to normal values and we disable timer with ball. StopExtTimer
1. If ExtTimerl value is between 0 and 15 second we change ball color with ball. UpdateBall
subroutine.

Second part of BlinkBalls is used to "flash" ball after slingshot rubber is hit.

Only difference is we use ExtTimer2 to count time (0.2 sec) after _hit() event and we set
ball color base on ExtInt2 value.

Sub DrawFrameTick()

This is same type subroutine as NewtonPhysicsTick. If you have that subroutine in script it
will be called right before new frame will be rendered.

The Line - xBAM.EnumBalls orders BAM to call BlinkBalls subroutine once for every ball
on table with "Balllnfo" object as argument. So, if we have 3 balls on table, BlinkBalls will be
called 3 times.

Sub CreateCustomBall

All balls using this example are Custom Balls and are created automatically at the trough.
You don't need to define any "custom ball" with xBAM.BallManager.DefineCustomBall
anymore now. You can just use O (zero) as a argument to
XxBAM_BallManager.CreatCustomBall. With this method, you can change ball textures any
time you want as well.

Both the RightSlingshot and LeftSlingshot subroutines in the hit code has special code
added to do the ball changing color briefly effect.

Setting xBAM Bal | . ExtI nt 2 =1 will give a green flash on the ball, while

setting xBAM Bal | . Ext I nt 2=2 will give a blue flash. Any other number will be set to
no effect or coloring of the ball.

This is a copy of that code that you can place within your own hit code

code: "*Search for Const fpxBallBlinkingOn. O is
off, 1 is on. pgl92 of BAM main thread
| F fpxBallBlinkingOn = 1 THEN " Ball

Fl ash bl ue
XxBAM Bal | . Reset Ext Ti ner 2
xBAMBal | . ExtInt2 = 2 ' sets ball flash color
End | f

© CUSTOM BALLSSCRIPT

These are the scrip table commands as written by ravacade.

Note:

Every time you call xBAM.BallCloseTo you get in return this object. Also in every

something_hit() subroutine you have access with xBAM.Ball to info what ball hit that "somthing" (like
Sub LeftSlingshotRubber_Hit())

e XBAM.Ball.ld
unique id for every custom bal. Itis=-1if it is"normal" ball, not custom

e XxBAM .Ball.Name
You can GET or SET ball "type". In previous BAM version if you want to change ball texture you
need to define ball "type" with xBAM.BallManager.DefineCustomBall and you need to pass this
"type" as param to xXBAM.BallManager.CreatCustomBall. In _hit() subroutine to change that one
ball you need only

code: xBAMBal|l.Nane = Ball A

e XxBAM Ball.UpdateBall red, green, blue, dirtTextrureName, reflectionTextureName,

reflectionl nPlayfieldTextureName
Change custom ball look. Now, you don't need to define custom ball with
XxBAM .BallM anager .DefineCustomBall, you can change look of one single custom ball any
time in script. Y ou can change texture or color of ball. (ONLY CUSTOM BALL).
e XxBAM .Ball.Opacity
Set ball opacity... like with xBAM.BallManager.SetBall Opacity function, but easy way
e XxBAM .Ball.SetBallOpacityWithEasing Opacity, Time, Easing
Set ball opacity... like with xBAM.BalIManager.SetBall OpacityWithEasing function, but easy way
e XBAM .Ball.ExtTimer1[b], xBAM.Ball.[b]ExtTimer2[b], xBAM .Ball.[b]ExtTimer 3[b]
Every ball on table have 3 own timers. Unit is 1 second. You can use it in script. Also,
[b]ExtTimerl is started when ball is created. So, when you read it you will get how long that one
ball ison table. Every disable timer will return 0.0. Every enabled timer will return value bigger
than 0.0.
e XxBAM .Ball.ResetExtTimer timerldx
(timerldx = 1 or 2 or 3), you can use this function to reset timer
e XxBAM .Ball.StopExtTimer timerldx
(timerldx = 1 or 2 or 3), stop timer.

& Additional
These are copies of forum posts made by rav, placed here for reference. Over time, this section will be
rewritten.

Pleses use xBAM.Ball or fpBallld ONLY in something_hit() subroutines, not in
FuturePinball_KeyPressed() or in CreateNewBall()
In CreateNewBall you have this:

Code:

XxBAM .Ball.Name = xBAM.Ball.Name + 1

xBAM .Ball.UpdateBall 192, 192, 192, "Beach 452", "Beach_334",
"Beach_269"'xBAM .Ball.Opacity = 0

CreateCustomBall PlungerKicker

That 2 lines xBAM.Ball may change look of any existing ball on table, but they will not change ook of
new ball created on PlungerKicker.

If you want to change look of ball in FuturePinball_KeyPress(), please do it thisway:

Code:
Sub FuturePinball_KeyPressed(ByVa KeyCode)
Dim ball
Set ball = xBAM.BallCloseTo(0,0)
If ball.exist Then
if keycode = 46 then ball.UpdateBall 192, 192, 192, "Beach_452", "Beach 334", "Beach 269"
If keycode = 47 then ball.UpdateBall 255, 255, 255, "Volley 452", "Volley 334", "Volley 269"
If keycode = 48 then ball.UpdateBall 222, 253, 130, "Tennis 452", "Tennis 334", "Tennis_269"

End If

So:
1. Find ball on table with xBAM.BallCloseTo

2. Check if ball exist
3. Change ball look (ball variableis THAT ball)

On "CustonBadll(1).fpt" you have this:

Code:

Dim Beachball, TennisBdl, VolleyBall

BeachBall = xBAM.BallManager.DefineCustomBall (192, 192, 192, "Beach 452", "Beach 334",
"Beach 269")

TennisBall = xBAM.BallManager.DefineCustomBall(222, 253, 130, "Tennis 452", "Tennis 334",
"Tennis_269")

VolleyBall = xBAM.BallManager.DefineCustomBall(255, 255, 255, "Volley 452", "Volley 334",
"Volley_269")

Y ou don't need to remove this code. Lets say you keeped it asit is.

Now, in LeftSlingshotRubber_Hit(), you can use Ball Transformations.UpdateBall like you do on
CustonBall(1).fpt
... Or you can write same rules like this:

Code:
Sub LeftSlingshotRubber Hit()
If xBAM.Ball.Name = BeachBall Then
XBAM.Ball.Name = TennisBall
Elself xBAM.Ball.Name = TennisBall Then
XxBAM .Ball.Name = VolleyBall
Elself xBAM.Ball.Name = VolleyBall Then
XBAM .Ball.Name = BeachBall
End If

Full-featured multi-format Help
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Generate Kindle eBooks with ease

Flipper Shadows
Flipper Shadows

(@ Flipper Shadows

- Flipper shadows don't require xBAM.CreateAllExt any more. So, all old tables will get ball
& flipper shadows without any modifications

- XBAM.DisableFlipperShadows / xBAM.EnableFlipperShadows can be used to
disable/enable shadows for selected or all flippers

If you pass as arg name of flipper like this:

XxBAM.DisableFlipperShadow "LeftFlipper"

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

it will disable shadow only for LeftFlipper,
If you skip argument it will be applied to all flippers.
So, for table with many extra-invisible-hidden-flipper, you can hide unwanted shadows.

Produce online help for Qt applications
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.
Easily create Qt Help files

Ball Shadows
Ball Shadows

fo Ball Shadows
v

About ball shadows:

They are not "real" shadows. It is just added dark spot under ball. This method have no
impact of performance and works allways. It may create some "errors" but in most cases it
looks realy good.

There is no point in adding real shadows calculated for every light position. First, it may
work only in new-renderer, second it will have huge impact of performance, third it may not
look any better.

New ball shadows are enable by default. You can find options to change it in Addons menu.
- dark level - (default: 0.7) - if you want to disable shadows, set value to 0.0. It determines
how dark is shadow.

- radius soft - (default: 1.8) - how far from ball shadow will be drawed [in ball radius units].
This is "soft" edge of shadow.

- radius hard - (default: 0.0) - "hard" edge of shadow. You "hard" = "soft" when whole spot
under ball is uniform. If "hard" < "soft", between that 2 edges shadow will be blured.

Please play with that params. Maybe you will finde better default values.

Script:
XxBAM.SetBallShadows dark_level, radius_soft, radius_hard, maxLevelAbovePlayfield,
removeShadowsFromInvisibleBall

Note, you have 2 more params than in BAM menu.

By default, when ball is above playfield, shadow under ball is smaller. If ball is ~13.5mm
above (1 ball radius) shadow will disappear.

- maxLevelAbovePlayfield - (default value = 1.0) - you can increase how far from playfield
ball shadow will diappear.

- removeShadowsFrominvisibleBall - (true/false, default true), If you have invisble balls on
table (with opacity = 0.0), when ball will don't have shadow. So, in script you can set this to
false and even invisible ball will have shadow. This is added in case if someone have wird
ball on table with attached miniplayfield and wan't have shadow.

If you skip last 2 params in call to xBAM.SetBall[Shadows, when default value will be used.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour

Easily create CHM Help documents

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

iPhone web sites made easy

BAM
BAM

cg BAM

Bam (Better Arcade Mode) is a plug-in for Future Pinball, designed to enhance Future
Pinball with additional features and capabilities. BAM has had a huge impact on FP,
not only just better physics, but also in other areas like lighting effects and soon, the
ability to run COM objects (programs outside of Future Pinball like music engines, .net
applications, and other plug-ins that previously were restricted by the FP dev)

The fpxEngine requires the use of BAM, and it is our recommendation that you always
use the latest version.

FPX has only the most basic support of BAM, the improved physics, and only the main
improvements. The fpxEngine has presets for physics packages (3 so far, based on
era,Solid State (1980), Data east (1985) and wpc (1990s), as well as adjustable
“flipper bounce" settings. All the settings for the BAM support in the fpxEngine can be
found in the Beginners Guide.

At the moment (beta 1.2) there will be no additional BAM support for the foreseeable
future. BAM, as good as it is, requires a very steep learning curve, and is not very
organized in a manner that makes using it more trial and error than instantaneous.
There are a lot of settings and adjustments, some people have been playing with it for
months, and you may have to go through ten's of pages just to find the information
needed to get even one feature working, or even find out what it does.

It was the decision of the fpxEngine developer (that would be me) that the weeks, if not
months of studying, testing, coding, debugging and then playing with BAM would be put
to better use in developing fpx. As much as some things in BAM are pretty damn
awesome, just don't have that time to learn how to use it.

Additional BAM features will be added if there is enough demand from the people who
use fpx for the creation of their own tables, or if another developer with that knowledge
adds the additional BAM code.

QUICK NOTES

Start game in debug mode by hitting the F9 key instead of the play icon, press the
Numberpad 5 key to generate a report of the BAM settings used in fpxEngine that is
written in thefpDebugTextLog.txt

fpxSetBounce (in User Input Section) sets the amount of bounce the ball will have off
the flippers. There is slower ball setting for the bounce, and a second fast ball setting.

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/iphone-website-generation

The slow ball settings have less "bounce" than faster balls.

e xPhysics can use 3 xml physics packages. Once more xml files are released, this
section will change to have more distinctive physics. 0= No XML(default xml in BAM
(NOT TESTED YET)) 1=wpc(1990) 2=Bally(1982) 3=DataEast(1985)

o fpxBallShadows adds a shadow underneath the ball as it is rolling around the playfield.
0=Ball shadows Off:1=BAM Default:2 = custom setting

o fpxBAMpfLighting adjusts the overall lighting of the entire table.
(1=bright/2=Medium/3=Dark)

o fpxUseShadowMaps allows user to turn on or off dynamic shadow maps (in case of
very slow or under powered computer)

e MaxOmega and MinOmega are the force of the flippers, and how hard they shot the
ball.

e xMaxBallSpeed is the maximum setting for Ball Speed. You would set this to lower for
EM type games (roughly 2000) while the latest games are a lot faster (around 3500)
fpx default as set is 3000

Free Qt Help documentation generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Produce electronic books easily

How the table is built
fpx Table Build

i;'? How the Table is Built

The fpxEngine includes several templates, with all of the elements built in a simple
manner that is amazingly enough, quite simple concepts. The templates were
designed, built and placed within the engine with a eye towards making the elements
as simple to modify and change in the easiest manner possible. Many authors have
their own way of doing things, this way is as easiest as possible as | could think of. This
page details how each object is set up with textures, the layer orders etc.

The general "build" of the Base template as well as other things like the Vault is quite
detailed, and everything will be already built for you complete with textures and any
additional objects such as ornaments, so you really don't have to do anything to have a
professional looking, polished table as it's already done for you.

© Set Surface Heights

One of the nice things about Future Pinball is the ability to set objects to the top of a
surface instead of adding a Height or a Offset to that object. The big advantage to this
is when you adjust the height of a surface, any objects that are attached to it will also
change their height to reflect the change. So if you adjust the height of a surface such as
the top playfield like Black Knight or Flash Gordon, any objects attached, like posts,
rubbers, targets, and ornaments will also change their height as well.

fpx has three main surfaces that nearly all objects are attached to.

https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

e a PFSurface - which is the floor of the table. All posts/rubbers/lights/holes etc are
attached to a_PFSurface, so if you adjust the height of a_PFSurface, all those objects
will be at that height set. This is handy if you wish to have a sunken playfield (like in
Black Hole) or a subway system within your game.

e a PlasticSurface - Some FP models require you to set their height above the
playfield, such as Gate Wires and Brackets. Usually, this is set to 32mm, or the
standard plastic height, but instead, we have a dedicated surface (a_PlasticSurface)
for this. a_PlasticSurface is set to 32 height, so most ornaments (such as single
screws on top of the header plastics) will rest right on top of the plastics. Some
objects may have a "offset" added, that makes that object slightly higher. The Offset
are not affected by any changes to the surface height, they just add a higher value to
the surface or if the object is attached directly to the playfield.

e a Light _Surface - FP has a bug when you attach a light object to a surface that is set
to be a playfield surface. The lights themselves become very transparent, and any
graphics attached are not very visible. On the other hand, as long as the "Surface is a
PlayingField" is unchecked, lights will render fine. a_Light_Surface is raised 1
millimeter so the lights will always be on top of the playfield, and these include bulbs
as well as lights. Make sure that all lights and bulbs are included in the LightList
Manager (top menu under "Table") so every light will work with LightSeq routines
(AddLightFX). All lights and bulbs have custom textures, you can change the textures
by selecting the texture in the Texture Manager, reimport and then replace the textures
with another texture.

A couple objects require that they are set to a different height. LightCredit is attached to
the Apron surface (p_Apron_46h) and the plunger gate bracket is set to the right far
wood wall (WoodWall_Right) as it needs to be set at 30 height.

© Texture and Model Manager

All the stock textures included with the future pinball install have been included, as well
as some custom graphics and models. As time goes on, more custom textures and
models will be added as fpx matures, but at the moment, there are just a few new
additions. Included with the fpxEngine package is a Resource Folder, these will contain
the default fp textures, as well as a complete copy of custom textures that you can use.

© Models

Future Pinball uses 3d models for it's objects, in a special format called fpm files.
These are actually models done in a program called Milkshape, which is a retail
product. Alas, it's not very popular, and FP only allows this one way of doing things, and
doesn't support the most popular formats like .obj

Still,over the years, other members have made their own models, including more
accurate models to replace some of the stock models,and have put in far better
"collision” meshes so FP plays far better than it use to. BAM has added far more
capabilities as well, Future Pinball now is a very different editor than what it use to be.

fpxEngine uses some of these models as it's default, such as better flippers and posts,
but the entire base FP models are also included for your use. Eventually, fpxEngine will
use nothing but custom models,as it allows you to add or replace custom models with
other models without having to touch the base fp models.

© Textures

All textures used by the fpxEngine templates are custom textures done by me as
opposed to the standard textures included within the FP install. There were a couple
reasons for this,and not just because they look nicer. A lot of authors don't use the
textures for their graphics, instead they use colors instead, especially with plastic and
metal posts. If you wish to change the color of a T5 plastic post (as a example) you have
to select each post, change the color of that post,and then do it for every post.

With fpx, all objects use textures for the images and colors, and all objects are set to the
same neutral color (a white-grey) so all you have to do is change a texture by replacing
the texture with another texture in the texture manager. This mean that if you want to
replace the color of the T5 post used in the template from blue to red, you can replace
the post texture (called a_post in the Texture Manager) with a red texture,and every
single post will automatically be updated and change to that red texture.

O Layers

On the left hand side of the Future Pinball editor, is a group of numbers from 1 to 0.
These are layers, which you can click on and off to hide or make visible any object
assigned to that layer. Unfortunately, there are only 10 layers, so it makes some tables
(especially the more complex tables) very hard to find certain objects. On top of that,
sometimes it's pretty hard to just remember which object is on a certain layer, so it can
be a while before you find it. All authors have a certain way to use layers, some group
some sections into it's own layer, while most group the most common items like lights
into it's own layer, but personally, even | forget where | set my objects to their layers.

fpxEngine uses layers as well. Most authors have their objects set to a certain layer,
with ornaments set to one layer, targets set to another layer etc. fpxEngine though does
it a different way. The vault system has prebuilt components that you can mix and match
(like a jigsaw puzzle), and sometimes you will need to modify or move the various vault
items around within your table, so instead, fpxEngine uses the layers BY VAULT TYPE,
in which all items within that vault are on one layer. This makes it a lot easier to change
the design of the vault item or move that item, all you need to do is to turn off all the
other layers. The other main advantage is if you have a group of items all on different
layers, it makes it a lot harder to modify, while with everything on that one layer, it
becomes far simpler.

The following is a list of the layers used for the main objects used in each vault item.

Layer 1 - Drop Targets

Layer 2 - Stand-Up Targets

Layer 3 - Kickers

Layer 4 - Triggers

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9 - Flipper and Header areas
Layer O - fpxEngine objects

£ About the Vault

The Vault allows the developer to use complete pre-built sections based from actual
arcade pinball games within his own table design, with advanced scoring and light
routines, within literally minutes. The objects in the Vault sections will match the objects,
textures, and models already included within the fpxEngine Template, and can be
changed just like the others. In fact, if you change a texture in one of the objects, and
then you add in objects from the Vault, those Vault objects if they have the same texture
name will also be changed to the new texture as well. Same goes for Models as well.

Create help files for the Qt Help

Framework
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free PDF documentation generator

fpxEngine Presets

fpxEngine Presets

fo fpxEngine Presets
Y

Because the main engine contains code that only advanced scripters should change, the
FPX Template is designed to give you the ability to customize your table in as easy a
manner as possible without having to dig through very confusing and easy breakable
advanced code

To make it easy, this template is split into 2 main sections, the user coder section, and the
main engine code.

The user coder section was written to give access to all the main things you would want to
change, like sounds/lights/ display messages, without having to search through thousands
of lines of code or accidentally modifying engine code that could break the script.

The main engine code you can leave alone, all of the code you may even want to modify is
pointed at the top of this script, and done as simple and as easy to understand way as
possible. These are "Hooks" within the main code, and give you access without causing
errors (even placing a line of code the wrong order can cause errors, you don't have to

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com

worry about it now, just keep your code here within this subroutine) With everything in one
place, and set and called properly from within the engine, all you have to do is add your
unique table code (Or just leave it the way it is)

All Display/LightSync/ music is tied into here, and will run off of just one timer, that you can
set the interval time for, and then you don't worry about anything else.

From the very start to the end, all the grunt work and engine stuff is done for you, just add
anything special you want to it.

Instead of having separate subroutines for each portion, this uses the Case statements. It
is a bit tricky sometimes for new coders to understand, but it's actually very easy to use.
Each Case corresponds to a section of the script. You just need to add whatever code you
want, or just leave it entirely alone.

Most of the code is the same, and any changes here you can make are usually text
messages, music, and timer intervals to set the amount of total time you want each case to
play before it automatically switches off. It really is the easy way to do things.

YOU DON'T HAVE TO CHANGE ANY OF THIS IF YOU DON'T WANT TO!

These are just presets, if you like it the way it is, leave it alone. If you do want to experiment
then this is a great place to do so, as since this is outside the main engine code, you have
a safe place to learn without causing errors to the engine (And if you do, let me know)

© AddScoringEvent

e AddScoringEvent is the main preset section that handles all in game scoring, from
adding multipliers, to Extra Balls, to preset routines for inlanes and targets. This very
powerful system allows you to just write (or copy and paste) a couple lines of code in
your hit section for each hit object to have fully functional scoring code. This preset
also will include all the code for the objects mechanics, kickers will kick the ball out,
drop targets will reset etc.

=~

Lin

& AddMusicSet

e AddMusicSet controls all the sounds, music, lightseq, and display code, all in on
place. You will even be able to select from multiple era styles, even by company style,
complete with their own custom displays and light show, just by changing one setting.
The AddMusicSet even handles the background sound for you automatically,
everything is already done for you

=~

Lin

© AddDisplay

e AddDisplay is the subroutine that controls all the display code, and the effects (such
as blinking text or score). Usually called by AddMusicSet, you can also reuse these
routines directly in your custom code with the Message(x) line code and then the call to
the case setting within AddDisplay (See the Beginner's Guide for the tutorial on
adding messages)

Lin

=~

© AddLightFX

AddLightFEX are the preset lighting routines using the Light Sequencer feature built into

Future Pinball.

& Some Quick Things You Need to Know

The TimerSetEventl is the main timer used by all the AddEngineEvent case settings.
Once this timer stops playing, it usually executes additional code, so | moved it out of
view, but more advanced coders may want to run additional code. | used the
SetEventNum variable for this, to prevent errors, but | also marked each case so it's
pretty easy to follow. This timer points to vital engine code, so if you don't know what
you are doing, leave this alone

Tilt: Just pointing this one out, Case "TILT" in the AddEngineEvent subroutine contains
all the code you want to happen when the game is tilted. The engine will automatically
handle it. If you want to add your own code (like flippers) this is where you put all the
code. | left all the "turn off" code in this case setting, if you remove it, then it's still active
even in tilt state. Just add your own code, everything else is automatically handled in
the other main subroutines and presets. If You need to add your own tilt check, here's
the code:

code: If (fpTilted = False) Then " IF the table IS NOT tilted THEN only

execute this code *

" bunch of code
End If " Okay we are done, so go to the next line of
code *

This template uses the ‘Light Sequencer' and preset codes. You need to put all the
lights in the "Light List Manager" in the tables menu at the top of the page. Open the
manager, select "AllLights" and press edit. You can add and remove lights and bulbs,
this is used for the Light Attract mode, tilt etc and is run automatically. You can find
more in the FP Manual pages : Table Components/Lights/Light Sequencer and
Managers/Light List Managers

Display Message: Everything is automated, it can be tricky to use because of the
math, so it is out of sight to beginners. The display will flash/show/scroll messages
instead of the score (i.e. Making a Extra Ball) but you can change the actual message
you want. Just keep the message inside the quotes.

Music Channels: FP has a very powerful music system, and has 8 music channels to
use. It is always best to have groups of sounds assigned to a channel, as this helps
prevent multiple sounds playing at once, which can be jarring, and makes it far easier
to keep things organized. Furthermore, FP has a EffectMusic command, which allows
you to fade in or out a channel or pause a channel (which we use for the background
sounds) The template uses 3 channels: Channel 2 - Is used for the Background music.
Channel 5 - Is used for the "hit event” music, music that plays when a object is made
during game play. Channel 6 - Is used and reserved for the actual engine, like the
game start up sounds, Match etc. PlaySound - anything that uses the PlaySound
command instead of the PlayMusic command are the "mechanical" sounds.
AddEngineEvent These are noted as these are sections you will need for your code.
Case "INITIALIZE" - table start up, here you put in your opening table variables. Case
"NEW_BALL" - This is where you add your code for the start of each new ball. No
need to dip in the engine, just put your routines like resetting target banks, clearing
variables etc right here. Case "TILT" - If you don't use the above hit event method, or

need to turn off flippers etc, this is the place to add your code. Does Match, then
restarts LightAttract mode at GAME OVER display

e The AddEngineEvent timer (TimerSetEventl) has been moved to be part of the main
engine, and should not be modified unless you really really know what you are doing

e The background music timer has also been moved to the engine code from the user
modification system

e A new timer has been created (TimerCloseScoringEvent) to give users a simple
single timer if they need it for the hit_code (e.g. pop targets delay time before they pop
back up) More code will be added in the future, this was used in my Jungle Girl table,
and proved to be quite useful. When a music file has finished playing, the engine then
points to the background music timer (to play the background sound). The background
sound system then points to TimerCloseScoringEvent to run any closing statements.
The very nice thing about this is you don't even have to code a timer interval, it's
already set by MusiclntervalTime in AddMusicSet.

e BG Sounds: The template can play Background sounds, but we have to do extra
coding to pause the background music so we can play other music before we
unpause the BG Music to continue playing. This prevents the Background music from
restarting at the very begining every time we want a new sound. We use the
"EffectMusic” command for this. We point to the EffectMusic Command to fade out
and pause the BG sound, we add a interval delay to match the replacement music
length and then call the timer to unpause the Background music to resume playing

code: |If you want to change the BG sound, search

for "TimerBackgroundMusi c_Expired()"

St opMusi ¢ 2: StopMusic 5: StopMusic 6 ' Stop any

sounds from playing. This is a error catcher nore

t han anyt hi ng

Ef fect Music 2, FadeQut AndPause, 0, 100 " We need

to pause the BG if it is playing for player added

sound. Channel 2 is used the background nusic

Ef fect Music 6, PlayAndFadeln, 1, 100 ' This fades

in the player added sound. Note the nusic channel is

6, which is the channel used for the engine nusic

I f PlayBackgroundMusic = 1 then "only if you

want background music to play as set. If this is set

to 0, then no background nusic will play at all
Unpause BG at the interval tine set for the tiner.

This is usually the total nusic tinme of that file in

mlliseconds you want to play

Ti mer Backgr oundMusi c. | nt er val =2500: Ti nmer Backgr oundMu

si c. Enabl ed=TRUE

End If

PlayMusic 6, "Bally81 new ball™",, fpxMaxMisicVol une

" Play that nusic file.

Full-featured multi-format Help
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easily create EBooks

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour

AddEngineEvent

AddEngineEvent
fpxEngine Presets »

fo AddEngineEvent
LY

Writing a engine script for pinball (either for FP or VP) is one of the hardest things to
do. It requires a lot of experience with code to be able to pull it off, and can take months
of writing and testing before even a basic template engine is ready to be released. The
biggest problem though is for the vast majority of people, it is actually using that
template, as the concepts and knowledge needed to understand and use that template
is way beyond the capabilities of about 99% of the worlds population. Coding
something is really hard. Understanding what the code does when you don't know any
coding at all is even harder.

This has always been the biggest thing with templates, or even making your own table.
You have to learn how to code, and most people just don't have that time to learn. Even
intermediate coders have problems dealing with a engine code, especially on where
they can add or modify code. A decent engine can be in the thousands of lines of code,
and it is almost impossible to figure out where to place a small piece of code within the
engine without causing errors and hours and hours of debugging because of that.

The AddEngineEvent subroutine allows you to add your own code to the main engine in
a way that is totally different than any other template before it. Instead of making you go
through thousands of lines of code, instead, fpxEngine uses the concepts of "hooks".
Within one subroutine, you will have complete access to all parts of the main engine
core, without having to even look at that core if you don't want to.

Within the main engine code are the hooks that point to AddEngineEvent, safe places
for you to add your code like what you want a light to do at the start of a new ball, or if
you wish to turn off a bumper if the game is tilted. There are many sections within a
engine, from the very start when a table is loaded in, the light attract mode, and all the
various parts of a game being played, from when a coin is inserted, to the game is
finished. AddEngineEvent contains hooks for all these parts, so you can add your own
code or modify the default code to your tastes.

As the engine matures, this section will contain any updates, and also have examples of
additional code needed for future more advanced features. In the meanwhile, the
Beginners guide has a section just on_AddEngineEvent, that explains everything in
detall if you wish to make any changes (though it's optional)

Full-featured Documentation generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Create cross-platform Qt Help files

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

AddKeyEvent

AddKeyEvent
fpxEngine Presets »

fo AddKeyEvent
LY

AddKeyEvent is a subroutine that allows you to add custom code or additional features
(such as a third flipper) that requires a keypress to use or activate. Like AddEngineEvent,
theses are "hooks" that point to the main key press routines, safe places for you to add
your code. Though the main engine routines look relatively simple, they can be very hard for
beginners as proper placement of any custom code can be quite tricky.

AddKeyEvent uses the keys that are defined in the Preferences menu in the editor by the
user, as opposed to calling the keys directly. By default FP sets the SHIFT keys for the
flippers, the ENTER key for the plunger. the A and the ' keys for the special keys (basically
a second set of flipper buttons, like the magne save on Black Knight) and the
SPACEBAR, / and Z keys for nudging. By using the default key code used by FP, a user
can change the keys and it will still be recognized and used by fpx.

BAM has it's own set of keys, unfortunately though, BAM has set as it's defaults, some of
the reserved keys used by FP, so you will lose some functionality. The P key which was the
pause key in FP is now the key to change the texture of the ball, and the tithe key which is
the default key for displaying or hiding the HUD display in desktop instead calls the BAM
menu (as well as the Q key, which is rather puzzling)

As having the HUD being able to display or fade out (if you use a cabinet) is very important,
the HUD key is coded in fpx to be the H key.

FP has a manual (help right at the top when clicked will open up the manual) that explains
the keys. You can find the portion that describes

how to change the key by clicking the Preferences chapter on the left of the manual (almost
at the bottom) and then Game Keys and Controls

AddKeyEvent has code hooks for the flippers and special keys (pressed and released as
you have to tell the script to move the flipper up or down), additional code for the HUD
(which is unused at the moment) and also for a coin in (in case you wish to add something
when a player "inserts" a coin). Everything else would be handled by AddEngineEvent (like
game start or match routines)

At the moment, AddKeyEvent doesn't have a lot within it, it is very basic, though as the
engine matures and with more releases to come, you can expect more key press code to
be added.

© The routine

code: Sub AddKeyEvent (KeyEvent Vari abl e)
Sel ect Case KeyEvent Vari abl e
case

Left Fl i pperSol enoi dOn
Pl ay Sound , (f pxSoundVol une)
case
Left Fl i pperSol enoi dOF f
Pl ay Sound , (f pxSoundVol ume)
case
Ri ght Fl i pperSol enoi dOn
Pl ay Sound , (f pxSoundVol une)
case
Ri ght Fl i pperSol enoi dOf f
Pl ay Sound , (f pxSoundVol ume)
case
case
case
case
case
case
case
End Sel ect
End Sub

As you can see, only the Left and Right Flippers are used. The flippers are part of
fpxEngine, but were placed here for easy modification. The fp manual explains the flippers
in far greater detail, but briefly, SolenoidOn means the flipper is moving up or is fully up
when you press and hold a flipper key, and SolenoidOff means the flipper is moving down
or is fully down when you release that flipper key.

The PlaySound line is for the mechanical sound of the solenoid that the player hears when
he presses or releases a flipper key.

The other settings are blank. These are very handy though for testing while you are
developing your own game. You can add debug code to test features or other things as you
wish (just make sure you remove that code if you decide to share your table with others)

Easy to use tool to create HTML Help
files and Help web sites

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easily create PDF Help documents

AddMusicSet

AddMusicSet
fpxEngine Presets »

(@ AddMusicSet

AddMusicSet is the main routine that controls the display, Sound/Music, and lighting
routines. These are a series of presets that are run automatically, and there is a separate

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour

preset for each part of the engine. If you remove the main code for this, there will be no
effects or sounds, and the engine may "break". You should leave the main AddMusicSet
subroutine alone. If you want to use your own custom code, you can by just typing your own
music, display and lighting routines directly in your hit code, and not use the AddMusicSet
routines at all.

AddMusicSet though is a very powerful advanced system that gives amazing flexibility to
the engine just by changing one line to point to a different music set. The user can select
from one of the main music sets (such as from Bally or Williams games) and have fully
coded music and display routines running within his game automatically. Not only are there
different music sets, but also some routines have completely different display routines and
lighting effects from than from other music sets. It is also possible to even have completely
different rules for a feature (such as a target bank for example) depending on which music
set is being used. In other words, even if the playfield design is the same, you can have
completely different ways to play that design, different music, even a completely different
set of rules. If you ever wondered for example how the Williams game "“firepower" would
have been like if it was a Bally game instead of a Williams game, now you can find out, just
by changing the MusicSet line in the User Input Section from "w79" to 'Bally81". Down the
road, you may even be able to change the physics so you can play a EM style game, and if
you want, change it to a Solid State game, complete with different physics, scoring routines
and flashing effects (Just like Bally did with Fireball, updated the classic EM game to a
1980's game)

Note: there is no custom coding of different rules per rule set in the default fpx code, this
would have to be coded in by the developer of the table. A future update of this manual will
deal in detail with how to code in different rules/displays/lights etc.

If you want a different set of rules for each music set, all you would need to do is have your
Hit code look at which music set is selected, and run a set of rules accordingly.

code: | f MusicSet= t hen
code for rules for bally ganes
AddScor i ngEvent
El se
code for the other nusicsets
AddScor i ngEvent
End If

€ Changing Music Sets

Music sets can be changed just by modifying one line in the User Input Section by changing
one prefix to match the beginning of the file name to point to the proper set. The engine can
support a unlimited amount of music sets, fpx has included 3 music sets based on era and
company.

Each music set also contains preset pointers to the display for special effects like scrolling
text, and also special routines for the lights using the LightSeq feature within Future pinball.

?

A Note To Coders

You can also use the code within your hit event as well, so you can change music
sets right in game. In fact, if a player gets bored with one music set, he can just
change it to a completely different one any time he wishes. All supported music sets
within fpx can be used by any table at anytime, so you can make a more modern
table sound like a em table.

If you wish to use a different music set, then comment out the active line and uncomment
the line you wish to use. In this example, wsys7 is active, just put a apostrophe (') in the
front to turn the line to a remark, and remove the apostrophe from one of the other lines.

Setting the MusicSet to "off" means no music/display text/or lightseg. This is for coders

who wish to put in their own custom code or use their own combination of presets.

code: " MusicSet="Of " " This switches OFF ALL
MUSI C/ DI SPLAY/ LI GHTSEQ routines so you can code all
that yourself

" MusicSet="Bally81 " ' Set the

nmusi c/lightseqg/display for Bally 1982 era tables
" MusicSet="wr9_" " WIllians system 6 era
Musi cSet ="wsys7_" ' WlIllianms System 7 era

News and information about help
authoring tools and software

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Generate EPub eBooks with ease

AddDisplay

AddDisplay
fpxEngine Presets »

(@ AddDisplay

AddDisplay is the subroutine that handles all display text messages and adds special
routines for scrolling, blinking or flashing text. Generally used by AddMusicSet and the main
engine, AddDisplay was put in it's own subroutine (as a Select Case) so you can "mix and
match" display code with the other main routines. You can also directly call AddDisplay in
your custom code for one of the preset display routines.

This allows you to display messages instead of the players score in each of the 4 displays.
It's also used a lot by the engine, you will notice the Message(x) code lines in a lot of
areas, from table power up to the match routines. AddEngineEvent gives you access so
you can place your code directly into the engine, but it also gives you some things you can
change to suit you.

Message(x) are the text messages that are displayed in the display when you are playing a
game. There are 4 displays, so there are 4 messages you have to use. (and the 4 HUD

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
https://www.helpndoc.com/create-epub-ebooks

displays as well that match the displays in the translight) So, Message(1)=Playerl display,
Message(2)=player 2 display and so on.

Some of the AddScoringEvent presets uses just 2 messages, and add a scoring value to
the 2 bottom displays (like the Mystery Feature or displaying a bonus Multiplier), while
others will use all 4 displays

The things you need to remember

e Only change the text message that is between the quotes ("). Do not delete or change
anything else. Because there are 9 digits in each display, your words should be no
more than 9 characters long. Any lowercase letters you add will show when you are
playing a game, but as upper case letters, This is normal for non-dmd games.

e Even though you have 4 displays, each display can only display 9 characters at any
time.

e Some areas you only have 1 message (like the tilt) to do, others 2 messages, but
most are 4 messages.

e Sometimes, Message(3) and Message(4) will have quotes with nothing between
them.This means that Display 3 and Display 4 will show completely blank while in
game. You can add messages if you want, | just like how it looks.

© List of AddDisplay preset Routines

code: ' ---m-eemeaaaaaaaao Di splay settings
Dim AddDi splayCase ' Case settings for display
system
Di m Fl ashFor Di spl ayl nt erval
flashing display
Dim DisplayQueueTextInterval ' tine for each
QueueText (makes it easy to change one nunber
I nstead of a hundred)
Fl ashFor Di spl ayl nt er val =50 Default-Interval tine
for D splay blinking, Updatel nterval property is set
to half this value autonmatically in AddDi splay Sub.
Sub AddDi spl ay (AddD spl ayCase)
Handl es display effects
| F const AddDebug = 2 THEN AddDebugText
& (AddDi spl ayCase)
Sel ect Case AddDi spl ayCase
" Blanket code to display players score
Case

FOR x = 1 to PlayersPl ayi ngGne: Seg(x) . Text
= nvScore(x):HSeg(x).Text = nvScore(x): NEXT

Blinks Display at nedium speed player up display

Case
FOR x = 1 TO SegCount
Seqg x) . Sl owBl i nkSpeed =50: HSeg(x) . S| owBl i nkSpeed

interval time for

=50

Seqg Current Pl ayer) . QueueText
nvScore(Current Pl ayer), seBlink,
(Musiclnterval Tine), 0O, TRUE,

HSeg(Current Pl ayer) . QueueText
nvScor e(Current Pl ayer), seBli nk,
(Musiclnterval Time), 0O, TRUE,

NEXT
Case
FOR x = 1 to SegCount
Seg x) . Updatelnterval = 10: Seg(x). Sl owBl i nkSpeed

100: HSeg(x) . Updat el nt er val
10: HSeg(x) . Sl owBl i nkSpeed =100
NEXT
FOR x = 1 to PlayersPl ayi ngGne: Seg(x) . Text
nvScore(x): HSeg(x) . Text = nvScore(x) : NEXT
Seg Current Pl ayer) . QueueText
nvScor e
(Current Pl ayer), seBlink, 999999, 0, FALSE,
HSed Current Pl ayer) . QueueText
nvScor e
(Current Pl ayer), seBlink, 999999, 0, FALSE,
AddLi ght FX
These are variable speeds for blinking, as set in
the AddScoringEvent to match the blinking display to
the bulbs/lens interval blinking speed

Case
FOR x = 1 TO SegCount
Seg x) . Updatelnterval = 10: Seg(x). Sl owBl i nkSpeed

=(Di spl ayBl i nkl nterval) : HSeg(x) . Updat el nt er val

= 10: HSeg(x) . Sl owBl i nkSpeed =(Di spl ayBl i nkl nterval)
Seg Current Pl ayer) . QueueText

nvScor e(Current Pl ayer), seBli nk,

(Musiclnterval Tinme), O, TRUE,
HSeg(Current Pl ayer) . QueueText

nvScor e(Current Pl ayer), seBli nk,

(Musiclnterval Tine), 0, TRUE

NEXT
Case
FOR x = 1 to SegCount
Seqg x) . Updatelnterval = 10: Seg(x). Sl owBl i nkSpeed

(D splayBl i nkl nterval) : HSeg(x) . Updat el nt er val
10: HSeg(x) . Sl owBl i nkSpeed =(Di spl ayBl i nkl nterval)
NEXT
Seg Current Pl ayer) . QueueText
nvScor e
(Current Pl ayer), seBlink, 999999, 0, FALSE,
HSeqd Current Pl ayer) . QueueText
nvScor e
(Current Pl ayer), seBlink, 999999, 0, FALSE,
AddLi ght FX
mat ching score display effects after a nessage
event
Case
"Scrolls the score

Fl ushDi spl ay)
FOR x = 1 to PlayersPl ayi ngGne
Sed x) . QueueText

nvScor e
(
x), seScrollLeft, 2000,0, TRUE, - HSeg(x) . QueueText
nvScore(x), seScrollLeft, 2000, 0, TRUE,
NEXT

| F const AddDebug >1 THEN AddDebugText
" Preset blinking speeds
Case
FOR x = 1 TO SegCount
Seqg x) . Sl owBl i nkSpeed
=(Fl ashFor MsBI i nkl nt erval *3) : HSeg(x) . SI owBl i nkSpeed
=(Fl ashFor MSBI i nkl nt er val *3)
Seq x) . QueueText
Message
(x), seBlink, (Musiclnterval Tine), 0, TRUE,
HSeqg(x) . QueueText
Message
(x), seBlink, (Musiclnterval Tine), 0, TRUE,
NEXT
Case
FOR x = 1 TO SegCount
Seg(x) . Sl owBl i nkSpeed
=(Fl ashFor MsSBI i nkl nt erval *2) : HSeg(x) . S| owBl i nkSpeed
=(Fl ashFor MsBI i nkl nt er val *2)
Seqg x) . QueueText
Message
(x) & , seBlink, (Musiclnterval Tine), 0, TRUE,
HSeg(x) . QueueText
Message
(X) & , seBlink, (Musiclnterval Time), 0, TRUE,
NEXT
Case
FOR x = 1 to SegCount: Seg(x) . Updat el nterval
50: HSeg(x) . Updat el nt er val
50: Seg(x) . Sl owBl i nkSpeed
100: HSeg(x) . SI owBl i nkSpeed

100: Seg(x) . Text="": HSeg(x) . Text="": NEXT
Seg(1) . QueueText

(Message
(
1))
&
, seBlink
, (Musiclnterval Tine), 0, TRUE, : Seg(2) . QueueText

(Message

(2)) & , seBlink, (Musiclnterval Tine), 0, TRUE,
HSeg(1) . QueueText

(Message

(

1))

&

, seBlink

, (Musiclnterval Tine), 0, TRUE, - HSeg(2) . QueueText

(Message

(2)) & , seBlink, (Musiclnterval Tine), 0, TRUE,
Seq 3) . QueueText

(Message

(

3))

&

, seNone

, (Musiclnterval Tine), 0, TRUE, - Seg(4) . QueueText

(Message

(4)) & , seNone, (Musiclnterval Tine), 0, TRUE,
HSeqg(3) . QueueText

(Message

(

3))

&

, seNone

, (Musiclnterval Tine), 0, TRUE, - HSeg(4) . QueueText

(Message

(4)) & , seNone, (Musiclnterval Tine), 0, TRUE,

Case

Fl ushDi spl af)

FOR x = 1 TO SegCount
Seqg x) . Sl owBl i nkSpeed
=(Fl ashFor MsBI i nkl nt erval) : HSeg(x) . SI owBl i nkSpeed
=(Fl ashFor MSBI i nkl nt erval)
Seq x) . QueueText

Message

(x) & , seBlink, (Musiclnterval Tine), 0, TRUE,
HSeqg(x) . QueueText

Message

(x) & , seBlink, (Musiclnterval Tine), 0, TRUE,
AddLi ght FX

NEXT
Case

FOR x = 1 TO SegCount

Seq x) . Updat el nt er val
(Fl ashFor Di spl ayl nterval / 4)
HSed x) . Updat el nt er val
(Fl ashFor Di spl ayl nterval / 4)
NEXT
For x=1 to 5 '
flashs the display 10 tines
Seqg 1) . QueueText
(Message
(
1))

& , seNone, (FlashForDi splaylnterval),0, TRUE,
Seq 2) . QueueText
, seNone, (FlashForDisplaylnterval),0, TRUE,
Seq 3) . QueueText
, seNone, (FlashForDi splaylnterval),0, TRUE,
Seq 4) . QueueText
, seNone, (FlashForDisplaylnterval),0, TRUE,
HSed 1) . QueueText

(Message

(

1))

& , seNone, (FlashForDi splaylnterval),0, TRUE,
HSed 2) . QueueText
, seNone, (FlashForDisplaylnterval),0, TRUE,
HSeqd 3) . QueueText
, seNone, (FlashForD splaylnterval),0, TRUE,
HSed 4) . QueueText
, seNone, (FlashForDi splaylnterval),0, TRUE,
Seg 1) . QueueText
, seNone, (FlashForDisplaylnterval),0, TRUE,
Seq 2) . QueueText

(Message

(

2))

& , seNone, (FlashForDi splaylnterval),0, TRUE,
Seq 3) . QueueText
, seNone, (FlashForDi splaylnterval),0, TRUE,
Seq 4) . QueueText
, seNone, (FlashForDisplaylnterval),0, TRUE,
HSed 1) . QueueText
, seNone, (FlashForDi splaylnterval),0, TRUE,
HSed 2) . QueueText

(Message

(

2))

& , seNone, (FlashForDi splaylnterval),0, TRUE,
HSeqd 3) . QueueText

, seNone, (FlashForDisplaylnterval),0, TRUE,
HSed 4) . QueueText
, seNone, (FlashForDi splaylnterval),0, TRUE,
NEXT
" then displays solid display till nusic is
finished before it resets to player scores
Seg 1) . QueueText

(Message

(1)) & , seNone, (Musiclnterval Tine), 0, TRUE,
Seq 2) . QueueText

(Message

(2)) & , seNone, (Musiclnterval Tine), 0, TRUE,
Seq 3) . QueueText

(Message

(3)) & , seNone, (Musiclnterval Tine), 0, TRUE,
Seq 4) . QueueText

(Message

(4)) & , seNone, (Musiclnterval Tine), 0, TRUE,
HSed 1) . QueueText

(Message

(1)) & , seNone, (Musiclnterval Tine), 0, TRUE,
HSed 2) . QueueText

(Message

(2)) & , seNone, (Musiclnterval Tine),0, TRUE,
HSed 3) . QueueText

(Message

(3)) & , seNone, (Musiclnterval Tine),0, TRUE,
HSed 4) . QueueText

(Message

(4)) & , seNone, (Musiclnterval Tine),0, TRUE,

Case

FOR x = 1 to SegCount
Seqg x) . Sl owBl i nkSpeed =50: HSeg(x) . SI owBIl i nkSpeed
=50
Seqg x) . QueueText
(Message(1)) & - HSeg(x) . QueueText
(Message(1)) &
Seqg(1) . QueueText

(Message(1l)) & , seBlink, 2000, 0, FALSE,
Seq 2) . QueueText

(Message(2)) & , seBlink, 2000,0, FALSE,
Seq 3) . QueueText

(Message(1l)) & , seBlink, 2000, 0, FALSE,
Seqg 4) . QueueText

(Message(2)) & , seBlink, 2000, 0, FALSE,
HSeg(1) . QueueText

(Message(1)) & , seBlink, 2000, 0, FALSE,
HSeg(2) . QueueText

(Message(2)) & , seBlink, 2000,0, FALSE,

HSeqg(3) . QueueText
(Message(1)) & , seBlink, 2000, 0, FALSE,

HSeg(4) . QueueText

(Message(2)) & , seBlink, 2000,0, FALSE,
NEXT
Scrol ling
Case

"Adds 4 Message, then scrolls it out
FOR x = 1 To SegCount: Seg(x).Text =

- HSeg(x) . Text = - NEXT
Seg 1) . QueueText
(Message
(
1))
&
, seScrollLeft, (Musiclnterval Tinme/2), 0,
Seq 2) . QueueText
(Message
(
2))
&
, seScrollLeft, (Musiclnterval Tinme/2), 0,
Seq 3) . QueueText
(Message
(
3))
&
, seScrollLeft, (Msiclnterval Tine/2),0,
Seq 4) . QueueText
(Message
(
4))
&
, seScrollLeft, (Msiclnterval Tine/2),0,
HSed 1) . QueueText
(Message
(
1))
&
, seScrollLeft, (Miusiclnterval Tinme/2), 0,
HSed 2) . QueueText
(Message
(

2))

TRUE,

TRUE,

TRUE,

TRUE,

TRUE,

&

, seScrollLeft, (Musiclnterval Tine/ 2),0, TRUE,
HSed 3) . QueueText
(Message
(
3))

&

, seScrollLeft, (Musiclnterval Tine/2),0, TRUE,
HSed 4) . QueueText
(Message
(
4))

&

, seScrollLeft, (Musiclnterval Tine/2),0, TRUE,
For x=1 TO 4: Seg(x) . QueueText

, seScroll Left

’(NUsicIntervaITine/Z),O, TRUE, - HSeg(x) . QueueText

., seScroll Left

, (Musiclnterval Tine/2),0, TRUE, - NEXT

Radar
Case
FOR x = 1 To SegCount: Seg(x).Text =
- HSeg(x) . Text = - NEXT

Seg 1) . QueueText

(Message

(

1))

&

, seW peRadarLeft, (Miusiclnterval Tinme/2),0, TRUE,
Seq 2) . QueueText

(Message

(

2))

&

, seW peRadarLeft, (Musiclnterval Tine/2),0, TRUE

Seq 3) . QueueText
(Message
(
3))

&

, seW peRadar Ri ght

, (Musiclnterval Tine/2),0, TRUE,
Seq 4) . QueueText

(Message

(

4))

&

, SeW peRadar Ri ght

, (Musiclnterval Tine/2),0, TRUE,
HSed 1) . QueueText

(Message

(

1))

&

, SseW peRadar Ri ght

, (Musiclnterval Tine/2),0, TRUE,
HSed 2) . QueueText

(Message

(

2))

&

, seW peRadar Ri ght

, (Musiclnterval Tine/ 2),0, TRUE,
HSed 3) . QueueText

(Message

(

3))

&

, seW peRadarLeft, (Miusiclnterval Tinme/2),0, TRUE,
HSed 4) . QueueText

(Message

(

4))

, seW peRadarLeft, (Miusiclnterval Tinme/2),0, TRUE,
Seq 1) . QueueText

(Message

(

1))

&

, seW peRadar Ri ght

, (Musiclnterval Tine/2),0, TRUE,
Seq 2) . QueueText

(Message

(

2))

&

, SseW peRadar Ri ght

, (Musiclnterval Tine/2),0, TRUE,
Seq 3) . QueueText

(Message

(

3))

&

, seW peRadarLeft, (Miusiclnterval Tinme/2),0, TRUE,
Seq 4) . QueueText

(Message

(

4))

&

, seW peRadarLeft, (Miusiclnterval Tinme/2),0, TRUE,
HSed 1) . QueueText

(Message

(

1))

&

, seW peRadarLeft, (Miusiclnterval Tinme/2),0, TRUE,
HSed 2) . QueueText

(Message

(

2))

&

, seW peRadarLeft, (Miusiclnterval Tinme/2),0, TRUE,
HSed 3) . QueueText

(Message

(

3))

&

, seW peRadar Ri ght

, (Musiclnterval Tine/2),0, TRUE,
HSed 4) . QueueText

(Message

(

4))

&

, seW peRadar Ri ght
, (Musiclnterval Tine/2),0, TRUE,

Case
FOR x = 1 to SegCount
Seg x) . Updatelnterval = 50: Seg(x). Sl owBl i nkSpeed
=100

HSeg(x) . Updat el nt er val
= 50: HSeg(x) . Sl owBl i nkSpeed =100

Seqg x) . QueueText
(f pxMaxExtraBal | Al t er nat eScore), seBlink
, (Musiclnterval Tine), 0, FALSE,

HSeqg(x) . QueueText
(f pxMaxExtraBal | Al t er nat eScore), seBlink
, (Musiclnterval Tine), 0, FALSE,

NEXT
Case
FOR x = 1 to SegCount: Seg(x). Text=
- HSeg(x) . Text = - NEXT

FOR x = 1 to PlayersPl ayi ngGne
Seq x) . Text = nvScore(x): HSeg(x) . Text
= nvScor e(x) ' Reload scoring val ues
for all 4 player scores
NEXT

Case

Seg
(
1) . Set Val ue
(nvScorel): Seg
(
2) . Set Val ue
(nvScore2): Seg
(3). SetVal ue(nvScore3d): Seg(4).SetVal ue(nvScore4)

HSeg
(
1) . Set Val ue
(nvScorel): HSeg
(
2) . Set Val ue
(nvScore2): HSeg
(3). SetVal ue(nvScore3): HSeg(4).SetVal ue(nvScor e4)
Case

Seg
(
1) . Set val ue
(nvHi ghScorel): Seg
(
2) . Set Val ue
(nvHi ghScor e2) : Seg
(
3) . Set Val ue
(nvH ghScore3): Seg(4). Set Val ue(nvH ghScor e4)

HSeg
(
1) . Set val ue
(nvHi ghScorel) : HSeg
(
2) . Set Val ue
(nvHi ghScor e2) : HSeg
(
3) . Set Val ue
(nvHi ghScor e3) : HSeg(4) . Set Val ue(nvHi ghScor e4)
Case
FOR x = 1 To SegCount: Seg(x).Text =

- HSeg(x) . Text = NEXT
Seg 1) . Text = Seg(2). Text =
:HSeg(1). Text = - HSeg(2) . Text =
End Sel ect

End Sub

Easily create Help documents
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Produce electronic books easily

AddLightFX

AddLightFX
fpxEngine Presets »

i;“_o AddLightFX

AddLightFX are the code using the LightSeq feature within Future Pinball. These are
preset lighting routines used that are called by AddMusicSet for a light show while music is
playing complete with display effects. In future, other code like from BAM will also be
added in, but at the moment, this is pure LightSeq code. Since AddMusicSet also contains
the timer interval to play the music and display routine, this time is also used to run
AddLightFX for that time as well. fpx will automatically when the timer interval is finished,
stop the lightseq and display effects, reset the displays back to show the scoring, and then
fade back in the background music.

AddLightFX can be used in custom code, if the developer wishes to bypass the
AddMusicEvent system. At the present moment though, there are only a few routines for
lightseq built within the engine. Most of the more complex light effects (including multiple
routines) will be included with the Vault routines, and then included in AddLightFX for use
with other tables.

{ List of preset light routines

Stop

AllLightsOff
BlinkSlow
BlinkMedium
BlinkFast
DownAndCircle
CirclelnOn
Random
RandomFast
Random2second

Qt Help documentation made easy
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Generate EPub eBooks with ease

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/create-epub-ebooks

AddScoringEvent

AddScoringEvent

fo AddScoringEvent
Y

AddScoringEvent are the preset feature scoring routines that you can point to within your
hit code, like extra ball, or the Mystery Award. The engine will react differently depending on
which music set you select, as the music/display/light effects are different from music set to
music set.

)

A Note To Coders

AddScoringEvent will point to AddMusicSet to determine which company music set
will play. From there, AddMusicSet will select a display (blinking, scrolling, other fx)
and also a lighting effect.

Using the AddScoringEvent is pretty simple, you can just copy and paste the code
provided with in a subroutine directly into your hit code. Some Events require messages to
be input, (which you learned how to do in the_Hit Code Section in the Beginners Guide)
followed by the main code line that points to the preset routines. All the main "features" are
here, and it is all set up the exact same way, so it's a pretty simple way to add complex
scoring within your game.

o If You Have Never Coded Before

Just a reminder, to use the code for the features, that code should be encased within
a subroutine
code: Sub fpxMyTrigger Hit
"This is your code....
End Sub

This section details each feature using AddScoringEvent, explains what they do, and (for
brave coders) gives a list of the main variables, engine subroutines and the code within
fpxEngine. Everything related to these features will be placed in their page, including (in
future versions) alternate code examples, additional commands you can use, and sections
on modifying the code to do more advanced routines. As well, with future releases of
fpxEngine, new scoring features, such as multiball or new features written for the vault will
be added.

Contents
e AddScore e BallSaver e Jackpot

e Extra Ball e Special e AddMultiplier

e Mystery e SlingShots e Inlanes
e QOutlanes

Free Web Help generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easily create iPhone documentation

AddScore

AddScore
AddScoringEvent »

(@ AddScore

Adds points to the player's score
The points you wish to give to the player should be enclosed within 2 brackets. This
example gives 100 points.

code: Sub fpxMTrigger Hit
AddScore (100) ' Adds 100 points to the players
score
End Sub

You can use a variable to add points as well, such as a randomly generated number or a
increasing advance value. This way, you can define different points depending on the
game conditions

code: D m MyAddedScore
MyAddedScor e=1000
Sub fpxMyTrigger Hit
AddScore (M/AddedScore) ' Adds points value from
MyAddedScore to the players score
End Sub

You can also use math expressions within your code. This example adds 100 points and
MyAddScore together

code: Di m MyAddedScor e
MyAddedScor e=1000
Sub fpxMyTrigger Hit
AddScore (100 + MyAddedScore) ' Adds points val ue
pl us MyAddedScore to the players score
End Sub

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour/iphone-website-generation

You can add, subtract, times, divide etc. You can also use 2 variables as well.

code: D m MyAddedScore
MyAddedScor eMul ti plier=2
MyAddedScor e=1000
Sub fpxMyTrigger Hit
AddScore (MyAddedScore
* MyAddedScoreMul tiplier) ' Adds points value tines
MyAddedScoreMul tiplier to the players score
End Sub

© Engine Code
List of main variables:

e Di m Poi nt s - Awards the amount written in the AddScore(x) statement to the
players total score, where (x) is a numeric value..

List of main Engine Subroutines:

e AddScor e(poi nt's) - Main scoring routine. This adds the points to the current
player's score, updates the player's display, and then checks for any replays if the
score is high enough for a free game. Note this routine uses FP's stock variables,
nvScore and CurrentPlayer

e Repl aySpeci al () - Called after AddScore(), this checks if the player's score
goes over the replay scores as set by the user in fpxReplayl and fpxReplay2 (settings
are at the top of the script in the user input section) and awards a free game.

code:
Sub AddScor e(points)
If (fpTilted = False) and (Ganel sStarted=1) Then

nvScor e
(CurrentPlayer) = nvScore(CurrentPl ayer) + points
add the points to the current
pl ayers score variable
I f LockDi spl ay=0 then
This prevents any scoring on the display or sound
during a Tined Event (AddEngi neEvent sub)
For x = 1 to PlayersPl ayi ngGne
Goto main display score routine
(Di spl ayScore())
Seg x) . Text = nvScore(x):HSeg(x).Text
= nvScore(Xx):
Next
Repl aySpeci al)
Check if you nade a replay or Hi gh Score
End If
End If

End Sub

This handles if player nmakes a replay goal
Sub Repl aySpeci al ()
If (fpTilted = False) Then
I f nvScore(CurrentPlayer) >= fpxReplay2 and

Repl ayToReach(Current Pl ayer) =1 Then ' any
replay wins? Note the order of which replay we check
first

Repl ayToReach
(Current Pl ayer)

Repl ayToReach(Current Pl ayer) +1

If nvCredits < fpxMaxCredits Then
f pxSpecial _Hit()
| F const AddDebug = 1 THEN AddDebugText

End If
End I f
I f nvScore(CurrentPlayer) >= fpxReplayl and
Repl ayToReach(Current Pl ayer) =0 Then

Repl ayToReach
(Current Pl ayer)

Repl ayToReach(Current Pl ayer) +1

If nvCredits < fpxMaxCredits Then
f pxSpecial _Hit()
| F const AddDebug = 1 THEN AddDebugText

End If

End I f

I f Repl ayToReach(Current Pl ayer) => 3 Then
Repl ayToReachCur rent Pl ayer) = 3

| F const AddDebug = 1 THEN AddDebugText

End |f
End If
End Sub

What is a Help Authoring tool?
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easy to use tool to create HTML Help files and Help web sites

BallSaver

BallSaver
AddScoringEvent »

https://www.helpauthoringsoftware.com
https://www.helpndoc.com/help-authoring-tool

i;'? BallSaver

The Ball Saver feature is a timed event that starts when the start of the player's ball is in
play from the plunger lane. When the player first shoots the ball with the plunger, it will roll
over the PlungerLaneTrigger, which automatically will start ballsaver. The BallSaver light will
turn on, and if the ball is drained and the light is on, the ball is "saved" and a new ball will
appear at the plunger with no loss to the players ball. The BallSaver will then switch off.

PlungerLaneTrigger will only award BallSaver once per ball, any other time the ball rolls
over that trigger will be ignored, so if the ball is saved, you can not light the ballSaver again
from the plunger area.

If you wish to turn on the Ballsaver as a special scoring feature, you can relight the
Ballsaver this code.

o If You Have Never Coded Before

Just a reminder, to use this feature, the code should be encased within a subroutine
code: Sub fpxMyTrigger Hit
"This is where your code goes....
End Sub

code: AddScori ngEvent
& Settings
code: fpxBall SaverTine = 10000

The settings for this feature can be found in the User Input Section at the top of the script.
This sets the time for the ball Saver feature to be active when a new ball is fired from the
plunger and enters the playfield to start play. By default, this is set to 10000 milliseconds or
10 seconds (1000 milliseconds = 1 second, 2500 milliseconds = 2.5 seconds) If you put in
"0", the BallSaver feature is switched off. The setting at the top of the script in the User
Input Section

£ Changing the Display Message

Because this feature is used through out the main engine, the message code and any other
code is in the AddEngineEvent subroutine. Just search for that subroutine (Sub
AddEngineEvent) and scroll down till you see the case setting and make your changes
within the quotes.

code: ' * ball saver feature is still on.
Case
Message(1) =

Message(2) =
Message(3) =
Message(4) =
AddMusi cSet

?

* | A Note To Coders

AddScoringEvent will point to AddMusicSet to determine which company music set
will play. From there, AddMusicSet will select a display (blinking, scrolling, other x)
and also a lighting effect.

€ Engine Code

This feature Event is part of the main engine core, and has several objects that is part of
the table. These objects must be present in the table, deleting any of these objects will
cause a error message when you play the table.
Objects needed

e LightBallSaver (light object)

e BallSaverTimer (timer object)

e PlungerLaneTrigger (trigger object)(in plunger lane)

List of main variables:

e Dim bBal | Saver Act i ve - Check if the Ball Saver is Active and in progress, or if
it's "off" or disabled.

e Dim Bal |l Saver St art - Flag used to control if the ball saver feature can be used,
or if it has already been finished and is not to be used again for that ball.

e DimfpxBall Saver Ti me - used to set the time for ballsaver (in seconds). This is a
user defined option in the_user input section at the top of the script.

List of Main Engine Subroutines:

e Drain_Hit() -The ball saver feature is checked at a Drain_hit, to see if the
BallSaver feature is active. If so, the engine will create a replacement ball, and kick it
back out to the plunger so the player can continue to play his ball.

e Repl aySpeci al () - Called after AddScore(), this checks if the player's score
goes over the replay scores as set by the user in fpxReplayl and fpxReplay2 (settings
are at the top of the script in the user input section) and awards a free game.

The Main AddScoringEvent Code

code: case

bBal | Saver Acti ve = TRUE: Bal | Saver Start=1 ' set our
gane fl ag
Bal | Saver Tiner. Interval = fpxBall SaverTine

Interval tinme for ballsaver. Set the tinme at the top
of the script
Li ght Bal | Saver. St at e=Bul bOn: Bal | Saver Ti ner . Enabl ed

= TRUE
| F const AddDebug = 1 THEN AddDebugText
& fpxBal |l Saver Ti ne

The PlungerLaneTrigger is part of the engine, and uses a timer called

Bal | Saver Ti ner, here's a copy of the code used. If the ballsaver feature is to be
active, PlungerLaneTrigger will activate the ball saver once the ball is rolled over.

Bal | Saver St art s the variable that only allows ball saver to be used once from the
plunger (only at the start of the players ball)

code:

" A ball is pressing dowm the trigger in the
shooters |ane
Sub Pl unger LaneTrigger Hit()

| F const AddDebug = 1 THEN AddDebugText

bBal | I nPl unger Lane = TRUE

Ganel nPr ogress=1 " LEAVE TH S LI NE ALONE, DO NOT
DELETE this tells the script a gane is started

If (fpxBall SaverTime <> 0) And (bBall SaverActi ve
<> TRUE) Then " if there is a need
for a ball saver, then start off a tiner, only start
if it is currently not running

If (Ball SaverStart=1) Then ' and only if the bal

hit the trigger in the plunger wire. (ball in the
shooters | ane)
AddScori ngEvent ' Start the Ball

Saver timer
| F const AddDebug = 1 THEN AddDebugText

End I f
End If
| F const AddDebug = 1 THEN AddDebugText

& & (Ganel nPr ogress)

set LastSwitchHt = PlungerlLaneTrigger ' renmenber
| ast trigger hit by the ball
End Sub

The ball saver tiner has expired. Turn it off and
reset the gane flag

Sub Bal | Saver Ti mer _Expired()
| F const AddDebug = 1 THEN AddDebugText

Bal | Saver Ti ner. Enabl ed = FALSE " stop the tinmer
from repeating
bBal | Saver Acti ve = FALSE
Li ght Bal | Saver. St at e=Bul bOf f: Bal | Saver Start=0 '
clear the flag, turn off the I|ight
End Sub

fpxEngine

Code for the ballsaver feature in Drain_Hit()

The code first checks to see if the BallSaver is still active. If it is, then it will run the Ballsaver
made routine,and then pass it on to the Drain2 _hit routine to kick out a replacement ball.
The second part of the code is for if the ballsaver is NOT active, it will then run the end of
ball routine and start the bonus countdown.

code:

I f (bBall Saver Active = TRUE) AND (fpTilted
= Fal se) Then " This checks if
the Ball Saver is active

| F const AddDebug = 1 THEN AddDebugText

*** ENG NE CODE. DO NOT DELETE THI SI!tl ***
Drai n2() " Kicks
ball out and bypasses ball end routines
AddEngi neEvent
" *HOOK* to AddEngi neEvent subroutine where
you can add your unique code for Ballsaver
Set Event Num15
sets case for TinmerSetEventl. This points to end of
the routine
Ti mer Set Event 1 Enabl ed = True
" run AddEngi neEvent tiner at interval to
cl ear nessage, restore scoring
Bal | Saver St art=0 '
ENG NE CODE VERY | MPORTANT!!! DO NOT REMOVE!!!
Exit Sub '
QUT of this subroutine, do not pass go, do not
collect 200 dollars
End If
I f (bBall Saver Active = FALSE) Then
Bal | saver Not active
MenorySave) '
Save Pl ayer nenory
AddEngi neEvent
" Stops nusic channels used by engine.
Pl ayMusic 6 ,, FpxMaxMusi cVol une
Ti mer Set Event.1 nterval = 500
" set the delay tinme before the bonus countdown

GET

begi ns
Set Event Nun7: Ti ner Set Event 1. Enabl ed = TRUE
" And use the AddEngi neEvent Tiner to
start the bonus countdown
End If

Code for Drain2_Hit()

When Drain_Hit() passes on control while it is plaing the "ball is saved" routine, Drain2()
then handles the replacement ball so that player can continue his ball in play. Drain2 also
turns off any active ballsaver code, sets bBallSaverActive to off so the ball saver doesn't
relight again coming from the plunger and then exits the subroutine to prevent any
additional code from being used.

92/251

fpxEngine

code: If (fpGanmelnPlay = TRUE) And (fpTilted
= FALSE) Then " if there is a
gane in progress and
I f (bBall Saver Active = TRUE) Then
is the ball saver active,
| F const AddDebug = 1 THEN AddDebugText

Cr eat eNewBal ()
yep, create a new ball in the shooters | ane
Bal | Saver Ti merEnabl ed = FALSE
stop the ball saver tiner from repeating
bBal | Saver Active = FALSE
Li ght Bal | Saver . St at e=Bul bOf f '
clear the ball saver flag
Exit Sub
El se
" NOTE: THIS IS A ERROR CATCHER, it SHOULD be
caught at drain_Ht(), but because of other
features, the code may point here instead
If (BallsOnPlayfield = 1) Then
" cancel any multiball if on last ball (ie.
| ost all other balls)
If (bMultiBall Mode = True) then
and in a nulti-ball??
| F const AddDebug = 1 THEN AddDebugText

bMul ti Bal | Mode = Fal se
"not in multiball node any nore
AddEngi neEvent
Resets to allow multiball. This is
called nmultiple tines, so all the code is placed in
t he AddEngi neEvent
End | f
End If
If (BallsOnPlayfield = 0) Then
" was that the last ball on the playfield
EndOf Bal 1() '
handle the end of ball (change player, high score
entry etc..)
End If
End If
End If

BallSaverTimer
A basic timer used to keep track of the amount of time the ball saver is active. Once that
set time is finished, the timer clears all the lights and variables

code: ' The ball saver tinmer has expired. Turn it off and
reset the ganme flag

93/251

Sub Bal | Saver Ti mer _Expired()
| F const AddDebug = 1 THEN AddDebugText

Bal | Saver Ti ner. Enabl ed = FALSE
' stop the timer from repeating
bBal | Saver Active = FALSE
Li ght Bal | Saver. St at e=Bul bOf f: Bal | Saver St art =0
‘" clear the flag, turn off the |ight
End Sub

£ Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" to override any other music, lights, and
display routines until the time specified is finished. (mechanical sounds will still
play) While the music is playing, no other music/display/lights will be used, as this
is considered a main feature award and should have priority over anything else.

Free EPub and documentation
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Create HTML Help, DOC, PDF and print manuals from 1 single
source

Jackpot

Jackpot
AddScoringEvent »

{@ Jackpot

The Jackpot feature is a special feature that is built up during a ball in play and then
awarded to the player when that player makes a special feature or hits a certain object.
This is a very common feature with modern tables, and is used mainly for multiball play,
though you can use the jackpot event anytime you want to. You can add in your code that
adds to the Jackpot value directly in your hit code, and have it score a normal jackpot or a
superjackpot, which is the jackpot value times a multiplier.

To increase the value of a jackpot, place this within your hit code of the object you wish to
use. (Example is here)

https://www.helpndoc.com
https://www.helpndoc.com
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool

fpxEngine

The example code will add 5000 points to the jackpot total.

code: AddJackpot (5000) ' Adds to Jackpot total

© Hit Code

In the beginners template is a example that will award the Jackpot value to the players
score total using a trigger. You can replace the 2 messages as needed, the engine will add
the Jackpot value in the other two messages (in Display/HUD 3 and 4)

code: Sub fpxJackpot Hit() " Scores a
j ackpot
NOTE: There are only 2 nessages needed. The
engine will add the Jackpot value in the other two
nmessages (in Display/ HUD 3 and 4)
Message(1) =
Message(3) =
AddScor i ngEvent
End Sub

Using this code will award the SuperJackpot value to the players score total. There are only
2 messages needed. The engine will add the Super Jackpot value in the other two
messages (in Display/HUD 3 and 4)

code: Sub fpxSuperJackpot Hit() ' Scores
Super Jackpot (Jackpot x fpxSuperJackpotMiltiplier)
" NOTE: There are only 2 nessages needed. The

engine wll add the Super Jackpot value in the other
two nessages (in Display/ HUD 3 and 4)
Message(1) =
Message(2) =
AddScor i ngEvent
End Sub
£ Settings
code: ' * Jackpot
f pxJackpotmin = 10000 " mnimum Jackpot a

pl ayer can score (Iln points) To turn off Jackpot,
set both mn and nmax values to O

f pxJackpot max = 250000 " Maxi mum Jackpot a
pl ayer can score (In points)

f pxSuper Jackpot Mul tiplier = 2 multiples the
exi sting Jackpot score by this multiplier

The settings for this feature can be found in the User Input Section at the top of the script.

f pxJackpot mi n - isthe minimum jackpot a player can score

95/251

f pxJackpot max - isthe maximum jackpot a player can score

f pxSuper Jackpot Mul ti plier - isthejackpot multiplier used for superjackpot.
This will score the jackpot value times the fpxSuperJackpotMultiplier, so if your jackpot is
10000, and your multiplier is 3, then the superjackpot will score 30000 points

?

* ' A Note To Coders

The Jackpot feature is independent of the built in FP version.
© Engine Code
List of main variables:
e Di m Jackpot Awar d -The jackpot award given (in points).

These are set in the user input setting at the top of the script

e Di m fpxJackpot m n - The minimum amount a Jackpot will score.

e Di m f pxJackpot max - The maximum amount a jackpot will score.

e DimfpxSuperJackpot Mul ti pli er -the multiplier of a jackpot used for "Super
Jackpot".

List of Main Engine Subroutines:

e Drain_Hit() -The ball saver feature is checked at a Drain_hit, to see if the
BallSaver feature is active. If so, the engine will create a replacement ball, and kick it
back out to the plunger so the player can continue to play his ball.

e Repl aySpeci al () - Called after AddScore(), this checks if the player's score
goes over the replay scores as set by the user in fpxReplayl and fpxReplay?2 (settings
are at the top of the script in the user input section) and awards a free game.

The Main AddScoringEvent Code

code: case
| F const AddDebug = 1 THEN AddDebugText

I f (Jackpot Award >= fpxJackpot max) Then ' Sets
jackpot to a upper limt or lower |imt, set at very
top of the script

Jackpot Award = f pxJackpot nax
El se
I f (Jackpot Award < fpxJackpotm n) Then
Jackpot Award = f pxJackpot ni n
End I f
End if
AddScor g Jackpot Awar d)

| F LockDi spl ay=1 THEN LockDi spl ay=0 " W need to
check I'F there is another Event going on first so we
override it to run this next code

Fl ushDi spl ay() : Ti mer Backgr oundMusi c. Enabl ed

= FALSE: AddLi ght FX " Kills any

| i ght/sound/ nusic display routines running
Set Event Num=11: AddEngi neEvent - AddMusi cSet
Jackpot Award = fpxJackpotm n ' resets to mn

jackpot for the next tine

| F const AddDebug = 1 THEN AddDebugText
& (Jackpot Award) &

set LastSwitchH t = fpxJackpot

case
| F const AddDebug = 1 THEN AddDebugText

I f (Jackpot Award >= fpxJackpotmax) Then ' Sets
jackpot to a upper limt or lower limt, set at very
top of the script

Jackpot Award = fpxJackpot max
El se
I f (Jackpot Award < fpxJackpotmnm n) Then
Jackpot Award = f pxJackpot m n
End I f

End if

AddScor e(Jackpot Awar d
* (fpxSuperJackpotMultiplier))

| F LockDi spl ay=1 THEN LockDi spl ay=0 " W need to
check IF there is another Event going on first so we
override it to run this next code

Fl ushDi spl ay() : Ti mer Backgr oundMusi c. Enabl ed
= FALSE: AddLi ght FX " Kills any
| i ght/sound/ nusic display routines running

Set Event Num=11: AddEngi neEvent

: AddMusi cSet

Jackpot Award = fpxJackpotm n " resets to mn
j ackpot for the next tine

| F const AddDebug = 1 THEN AddDebugText

& (Jackpot Award) &
set LastSwitchHt = fpxSuperJackpot

AddJackpot

This "builds" up the jackpot value and storing that value in the Jackpot Awar d variable.
Note the checks for minimum and maximum routines. Awarding a jackpot orSuper Jackpot
Is done within your Hit code.

code:

Adds points to the jackpot. Wrks exactly like
AddScore, but you still have to collect it. You
would wite AddJackpot(100) in your code to add 100
points to the jackpot
Sub AddJackpot (poi nts)

If (fpTilted = False) Then

Jackpots only generally increment in multiball
node and not tilted but this dosn't have to be the
case

| F const AddDebug = 1 THEN AddDebugText
& (points) &
Jackpot Award = Jackpot Award + points
I f (Jackpot Award >= fpxJackpot max) Then
you may wish to limt the jackpot to a
upper |imt or lower limt, ie..
Jackpot Awar d = f pxJackpot max
El se
I f (Jackpot Award < fpxJackpotm n) Then
Jackpot Awar d = f pxJackpot m n
End If
End if
End if
End Sub

£ Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" to override any other music, lights, and
display routines until the time specified is finished. (mechanical sounds will still
play) While the music is playing, no other music/display/lights will be used, as this
is considered a main feature award and should have priority over anything else.

Easily create HTML Help documents
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.
Create help files for the Qt Help Framework

Extra Ball

Extra Ball
AddScoringEvent »

{;‘? Extra Ball

A Extra Ball is an additional bonus ball that can be earned by achieving a specific task. If
the player has made a extra ball, and then loses his ball (drained) then the engine will score
the bonus count and then give the same player a additional ball to play.

code: Message(1) =

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

Message(2) =
Message(3) =
Message(4) =
AddScor i ngEvent

Q Settings

The settings for this feature can be found in the User Input Section at the top of the script.

code: fpxMaxExtraBalls=1

This sets the limit to amount of extra balls a player can earn per ball.

code: fpxMaxExtraBall Al ternateScore=25000

In case a player already has made a Extra Ball, and is over the extra ball limit set by
f pxMaxExtraBal | s on the same ball in play, this instead will give a alternate score in
points. Default is 25 thousand points added to the score.

© Changing the Display Message

The messages are changed in your hit code, so you can have multiple extra ball features in
your table design each with their own message. All 4 displays are used for the extra ball,
the display effects are handled automatically by the engine depending on which music set
you are using.

code: Sub fpxExtraBall _Ht() ' Scores Extra Ball
Message(1) =
Message(2) =
Message(3) =
Message(4) =
AddScori ngEvent
End Sub

?

* | A Note To Coders

AddScoringEvent will point to AddMusicSet to determine which company music set
will play. From there, AddMusicSet will select a display (blinking, scrolling, other x)
and also a lighting effect.

This feature uses the AddEventTimer with a case setting that is part of the main
engine core. We use the Set Event Num variable to control that, so do not delete
that line of code.

We also point to AddEngineEvent in the code. These are hooks from the main
engine core, and though the case setting is blank, this still allows you to add code if
you wish to add custom code to this feature without having to directly modify the
main engine code.

€ Engine Code

This feature Event is part of the main engine core, and has a round light that is part of the
table. This object must be present in the table, deleting this object will cause a error
message when you play the table.

Objects needed

LightShootAgain (light object)

List of main variables:

Di m Ext raBal | sAwar ds(4) - Number of EB's out-standing (for each player)

These are set in the user input setting at the top of the script

D m f pxMaxExt r aBal | s -The jackpot award given (in points).
D m f pxMaxExt raBal | Al t er nat eScor e - The minimum amount a Jackpot will
score.

List of Main Engine Subroutines:

Drai n_Hit () - The ball saver feature is checked at a Drain_hit, to see if the
BallSaver feature is active. If so, the engine will create a replacement ball, and kick it
back out to the plunger so the player can continue to play his ball.

Ti mer Set Event 1_Expi red() - (Case 8) Timer used by AddEngineEvent, this
closes the code when a extra ball is made and resets the displays back to show the
players score.

The Main AddScoringEvent Code

code: case

Set Event Num=8
| F LockDi spl ay=1 THEN LockDi spl ay=0
W need to check IF there is another Event
going on first so we override it to run this next
code
AddEngi neEvent - AddMusi cSet
| F const AddDebug = 1 THEN AddDebugText

&
& & (ExtraBal | sAwards(Current Pl ayer)) &

Li ght Shoot Agai n. Fl ashFor Ms
(Musiclnterval Ti me),

(Fl ashFor MsBl i nkl nterval), Bul bOn

I f ExtraBal | sAwar ds(Current Pl ayer) >f pxMaxExtraBal | s
Then

' check anobunt of extra balls already nade, if we
are already at the maxi mum anount of extra balls...

ExtraBal | sAwar ds(Current Pl ayer) =f pxMaxExtraBal | s
check and force set anobunt of Extra Balls

End If

Ext r aBal | sAwar ds
(Current Pl ayer
) = ExtraBall sAwards(Current Pl ayer) + 1

| F ExtraBal | sAwar ds(Current Pl ayer) >f pxMaxExtraBal | s
THEN AddScore (fpxMaxExtraBal |l AlternateScore)

ResetForNewGame()

Note: only the code related to extra ball is shown here, all other code has been stripped
out.
This clears out and resets all variables at the start of each new game.

code: FOR i = 1 To const MaxPl ayers “initialize all
the variables (do all players in case any new ones
start a gane)

Bal | sRemainindi) = nvBallsPerGane ' Balls Per
Gane
ExtraBal | sAwardgi) = O " Nunber of
EB's out-standing
NEXT

EndOfBallTimer_Expired()

When the player is awarded a extra ball, and at the loss of his ball, this routine handles
giving the extra ball to the player, display the message and music prompt, and kicking the
ball out to the plunger.

This routine calls the AddEngineEvent subroutine (case "SHOOTAGAIN") so you can insert
any custom code you wish to use, and is also the place where you can change the display
message that is shown. The rest of the code then calls TimerSetEventl to "clean up" and
reset any Extra Ball code before it pops out a ball for that player to play. You will notice the
display routine code as well which displays the message you can set from
AddEngineEvent "SHOOTAGAIN".

code: |f (ExtraBall sAwards(CurrentPl ayer) <> 0) Then
" has the player won an extra-
ball ? (mght be nultiple outstanding)
| F const AddDebug = 1 THEN AddDebugText

Ext r aBal | sAwar ds
(Current Pl ayer
) = ExtraBal |l sAwards(Current Pl ayer) - 1

yep got to give it to them
I f (ExtraBall sAwards(CurrentPlayer) = 0) Then
if no nore EB's then turn off any
shoot again I|ight
Li ght Shoot Agai nState = Bul bO f

End | f
Fl ushDi spl aly) '
Stop Present display routine
AddEngi neEvent
To AddEngi neEvent subroutine where you can
add your wunique code, points to CreateNewBall ()
For x = 1 to SegCount: Seg(x) . Updat el nt erval
50: Seg(x) . Sl owBl i nkSpeed
100: HSeg(x) . Updat el nt er val
50: HSeg(x) . Sl owBl i nkSpeed =100: Next
Seqg 1) . QueueText (Message(l)) &
" Add the static nmessage first due to
better effect
Seq 2) . QueueText (Message(2))
Seq 3) . QueueText (Message(1l))
Seqg 4) . QueueText (Message(2))
HSed 1) . QueueText (Message(1)
2)
1)
2)

&
&
&

HSeqd 2) . QueueText (Message(
HSed 3) . QueueText (Message(
HSed 4) . QueueText (Message(
Seg 1) . QueueText
(Message(1l)) & , seBlink, 2000, 0, FALSE,
" Now we blink it.
Seq 2) . QueueText

) &
) &
) &
) &

(Message(2)) & , seBlink, 2000,0, FALSE,
Seq 3) . QueueText

(Message(1l)) & , seBlink, 2000, 0, FALSE,
Seqg 4) . QueueText

(Message(2)) & , seBlink, 2000, 0, FALSE,
HSed 1) . QueueText

(Message(1)) & , seBlink, 2000, 0, FALSE,
HSed 2) . QueueText

(Message(2)) & , seBlink, 2000,0, FALSE,
HSed 3) . QueueText

(Message(1)) & , seBlink, 2000, 0, FALSE,
HSed 4) . QueueText

(Message(2)) & , seBlink, 2000,0, FALSE,

Set Event Num®: Ti ner Set Event 1. Enabl ed = True
clean up and then runs
AddEngi neEvent timer to point to CreateNewBall ()
El se " no extra
bal | s

Bal | sRenai ni ng
(CurrentPlayer) = Ball sRemai ni ng(CurrentPl ayer) - 1
I f (Ball sRemai ni ng(CurrentPlayer) <= 0) Then
" it was the last ball
AddEngi neEvent
" Stops nusic channels used by engine.
bEnt eri ngAH ghScore = True
Enter high score

Ent er Hi ghScor € Current Pl ayer)
El se
EndO Bal | Conpl et €)
End | f
End If

© Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" to override any other music, lights, and
display routines until the time specified is finished. (mechanical sounds will still
play) While the music is playing, no other music/display/lights will be used, as this
is considered a main feature award and should have priority over anything else.

Easy EBook and documentation
generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Produce electronic books easily

Special

Special
AddScoringEvent »

i;'? Special

A special award is a free game, that a player earns by either making a certain task, or by
exceeding a certain scoring goal, such as a replay. In the fpxEngine, there is a example
that lights the special award in the outlanes with it's own playfield insert on the playfield.

o If You Have Never Coded Before

Just a reminder, to use this feature, the code should be encased within a subroutine
code: Sub fpxMTrigger_ Hit
"This is where your code goes....
End Sub

There are 3 separate types of specials built into fpx, the first is the basic example using a
trigger, the second is for the outlane "special”, and the third handles the Replay goals and
high score specials.

https://www.helpndoc.com
https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

To award a special in game, just make sure this code is included in your hit code. Both the
Outlane specials, fpxReplayl and fpxReplay2 will point to this subroutine first for the
messages to be displayed before it turns off the lights for the outlanes. MAKE SURE
THIS SUBROUTINE IS PRESENT as this is the subroutine that is pointed to for
making replay goals. If you delete fpxSpecial, you will no longer be able to award
specials, and may cause the table to display a error message. Doing the code this way
means you can have display messages for all 3 special routines. you can modify the text to
be displayed (between the quotes) just make sure each line is no more than 9 characters

code: ' NOTE: KEEP THI S CODE FOR SPECI ALS, DO NOT DELETE!
Sub fpxSpecial Hit() ' Scores a
free gane
Message(1) =
Message(2) =
Message(3) =
Message(4) =
AddScor i ngEvent
End Sub

Q Settings

code: f pxRepl ay1l 500000 " First replay award
f pxRepl ay2 750000 ' Second Replay award
f pxH ghScore = 1250000 ' H gh Score award default
val ue.
f pxMaxCredits =15 ' Maxi mum anount of credits
a ganme wll set.

The settings for this feature can be found in the User Input Section at the top of the script.

f pxRepl ay1 sets the first replay goal for the player

f pxRepl ay2 sets the second replay goal for the player

f pxH ghScor e sets the default high score.

f pxMaxCredi t s sets the maximum amount of credits a player can have.

© Changing the Display Message

Because this feature is used existentially by the main engine, the message code and any
other code should be placed within the Hit() section as part of a subroutine. The
fpxBeginnersTutorial already has this following code as a example, so just search for that
subroutine and make your changes within the quotes. All 4 displays are used for the
special, the display effects are handled automatically by the engine depending on which
music set you are using. Because this code is used to handle messages for all specials,
make sure this entire code is present in your hit code. The Outlanes page in this section
has the example for giving out a free game, but the basic code below is all you need.

code: Message(1) =
Message(2) =
Message(3) =
Message(4) =

AddScor i ngEvent

?

A Note To Coders

AddScoringEvent will point to AddMusicSet to determine which company music set
will play. From there, AddMusicSet will select a display (blinking, scrolling, other fx)
and also a lighting effect.

€ Engine Code

This feature Event is part of the main engine core, and has several objects that is part of
the table. These objects must be present in the table, deleting any of these objects will
cause a error message when you play the table.

List of main variables for Special
e Dim ReplayToReach(4) - Stock FP code, this is the range of replay needed by
player

These are set in the user input setting at the top of the script

e DimfpxRepl ayl - sets the first replay goal for the player

e Dim fpxReplay2 - setsthe second replay goal for the player

e Dim fpxH ghScore - setsthe default high score

e Dim fpxMaxCredits - setsthe maximum amount of credits a player can have.

Objects needed
e LightLeftOutLaneTrigger, LightRightOutLaneTrigger, CreditLight (light objects)
e Dispcredit (display object, in translight)
e LeftOutLaneTrigger, RightOutLaneTrigger (trigger object)(Outlanes)

The Main AddScoringEvent Code

code: case
Set Event Num=10 ' sets case for TimerSetEventl.
end of the routine, which calls CreateNewBall ()
| F LockDi spl ay=1 THEN LockDi spl ay=0 ' check |IF
there is another Event going on first to override it
AddEngi neEvent - AddMusi cSet
| F const AddDebug = 1 THEN AddDebugText

IF nvCredits < fpxMaxCredits THEN
nvCredits = nvCredits +1
D spCredi t. AddVal ue(1): CheckCredit
CreditLight. State = Bul bOn: Pl aySound :
(f pxSoundVol une)
Pl aySound , (f pxSoundVol une)
END | F

The AddScoringEvent code for the Outlanes Specials. Note that this code actually loops
back to the "Special" code above

code:

case
" special routine for CQutlanes. This repoints to
stock special code, and switches off special lights

at outl ane

Set Event Num=10 ' sets case for TinerSetEventl. end
of the routine, which calls CreateNewBall ()

| F LockDi spl ay=1 THEN LockDi spl ay=0 ' W need to
check IF there is another Event going on first so we
override it

AddEngi neEvent - AddMusi cSet

| F const AddDebug = 1 THEN AddDebugText

IF nvCredits < fpxMaxCredits THEN
f pxSpeci al _Hit()
END I F
' Have to renenber to swich those special l|ights
of f!
Li ght Left Qut LaneTri gger. St at e=Bul bOF f
Li ght R ght Qut LaneTri gger. St at e=Bul bOf f

ReplaySpecial()

This handles if player makes a replay goal

code:

Sub Repl aySpeci al ()

If (fpTilted = False) Then

I f nvScore(CurrentPl ayer) >= fpxReplay2 and
Repl ayToReach(Current Pl ayer) =1 Then ' any
replay wins? Note the order of which replay we check
first

Repl ayToReach
(Current Pl ayer)

Repl ayToReach(Current Pl ayer) +1

If nvCredits < fpxMaxCredits Then
f pxSpecial _Hit()
| F const AddDebug = 1 THEN AddDebugText

End If

End I f

If nvScore(CurrentPl ayer) >= fpxReplayl and
Repl ayToReach(Current Pl ayer) =0 Then

Repl ayToReach
(Current Pl ayer) = ReplayToReach(CurrentPl ayer) +1

If nvCredits < fpxMaxCredits Then

f pxSpecial _Hit()
| F const AddDebug = 1 THEN AddDebugText

End | f

End If

I f ReplayToReach(CurrentPlayer) => 3 Then
Repl ayToReachCurrent Pl ayer) = 3

| F const AddDebug = 1 THEN AddDebugText

End If
End If
End Sub

£ Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" to override any other music, lights, and
display routines until the time specified is finished. (mechanical sounds will still
play) While the music is playing, no other music/display/lights will be used, as this
is considered a main feature award and should have priority over anything else.

Create cross-platform Qt Help files
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free EBook and documentation generator

AddMultiplier

AddMultiplier
AddScoringEvent »

{@ AddMultiplier

A feature found on many games that allows you to multiply the end of ball bonus or a mode
bonus by some factor, such as x2, x3, etc., if certain features are hit enough times. The
fpxEngine supports up to a multiplier of x15.

The engine has 5 main multiplier lights, from 1x to 5x, and has a built in routine to handle
the correct multiplier as the score counts down so there is nothing needed for additional
coding.

o If You Have Never Coded Before

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com

Just a reminder, to use this feature, the code should be encased within a subroutine
code: Sub fpxMyTrigger Hit
"This is where your code goes....
End Sub

code: Message(1)= - Message(2) =
AddScor i ngEvent

In the code, you need to add 2 message lines for the display text, with the message you
wish to display in the quotes. If you leave the quotes blank, then the display will show blank
the the duration of the event routine. Display 3 and 4 will show the multiplier value made
automatically, so you just need to add messages for 1 and 2.

£ Settings

code: Maxi munmBonusMul tiplier = 5 ' Forced nmax anount

The MaximumBonusMultiplier is the maximum amount of multipliers you want in your game.
(up to 15x) Once the Engine reaches that amount, no more multipliers will be added. The
multiplier resets back to 1x at the start of each new ball (including the start of a extra ball).

The settings for this feature can be found in the User Input Section at the top of the script.

€ Engine Code

This feature Event is part of the main engine core, and has several objects that is part of
the table. These objects must be present in the table, deleting any of these objects will
cause a error message when you play the table.

List of main variables for Bonus Multiplier

e Di m Maxi munBonusMul ti pli er - Sets the maximum amount of Bonus
Multipliers a player can reach in game. This value is reset to 1x at the start of each
new ball.

e Dim Mult - Variable that stores the Bonus Multiplier value while the ball is in play. As
a example, mul t =2 means that the Bonus Multiplier is at 2x, mul t =4 means the
Bonus Multiplier is 4x etc.

List of main Engine Subroutines

e MultiplierLight() - Handles the routine to assign a proper light to match the
multiplier value when the ball is still in play, and not during the bonus count routine.

e CheckMul ti () - 'This routine checks for the multiplier (from the bonus countdown
routine), and calls Mul ti pl i er Li ght () to handle and display the proper BonusX
light while the bonus is counting down. Once all the bonus, and the Bonus Multiplier
are finished, this routine then calls the end of ball routine to start the next player ball.

e Ti mer Bonus_Expi red() - The main bonus routine, this handles the actual bonus
and calls CheckMul ti () to see if there are any multipliers left to do.

e Reset Bonus() - This resets the bonus and the Bonus Multipliers. This is called

once the countdown routine is finished and part of the end of the players ball routine.

Objects needed

Light1x (light object)

Light2x (light object)

Light3x (light object)

Light4x (light object)

Light5x (light object)

TimerBonus (timer object)(Part of Bonus routine)
TimerSetEventl(timer object)(main Engine Timer)
PlungerLaneTrigger (trigger object)(in plunger lane)

The Main AddScoringEvent Code

code: case
AddDebugText
Press F9 instead of play icon in editor to see
debug info. (Read the nmanual)
mult = nult+1
I f Maxi munBonusMul tiplier > 15

t hen Maxi munBonusMul tiplier = 15 " error
checker to prevent Miltiplier going over 15 if set
by user

For z = 1 To 5 : eval(& z &). State
= 0: Next " Switch off nmult lights first,

SO we just need to turn on the lights we want in the
case setting
If mult > Maxi nunBonusMul tiplier Then mult
= Maxi munBonusMul tiplier : End If " Forced
max nmult set by user
If mult > 15 Then nmult = 15 : End If
Forced mult max to prevent errors
AddMusi cSet
Mul tiplierLight)

MultiplierLight()

This turns on the proper multiplier light when ever the player increases his Bonus Multiplier
in-game. There is support for a maximum of 15 times with the multiplier. The engine is
completely automated, and has set routines for each multiplier as it counts down, so there
is no need to do anything. This can use all multiplier lights (including the "1x" light)

If there is a multiplier light you don't actually need, you should just drag that light so it's
hidden underneath the apron. Do not delete any lights, you will get a error.

code: Sub MultiplierLight()
AddDebugText
Press F9 instead of play icon in editor
to see debug info. (Read the manual)
" Turn off all lights first before we turn on the

correct light for the nmultiplier value
Light 1x. State = Bul bOFf : Light2x. State = Bul bO f
Li ght 3x. State Bul bOFf : Light4x. State = Bul bOf
Li ght 5x. State Bul bOF f
Sel ect Case nult
Case 15:For z = 1 To 5 : eval(& z
&). State = Bul bOn: Next " 15X
Case 14:Light5x. State Bul bOn : Light4x. State
Bul bOn : Light3x. State Bul bOn : Light2x. State
Bul bOn ' 14x
Case 13:Light5x. State
Bul bOn : Light3x. State
Bul bOn ' 13x
Case 12: Light5x. State

Bul bOn : Light4x. State
Bul bOn : Lightlx. State

Bul bOn : Light4x. State

= BulbOn : Light3x.State = Bul bOn 12x
Case 11:Light5x. State = Bul bOn : Light4x. State

= Bul bOn : Light2x. State = Bul bOn '11X
Case 10: Light5x. State = Bul bOn : Light4x. State

= Bul bOn : Lightlx. State = Bul bOn " 10x

Case 9 :Lightb5x. State Bul bOn : Light4x. State

= Bul bOn "9x
Case 8 :Light5x. State = BulbOn : Light3x. State
= Bul bOn ' 8X
Case 7 :Light5x. State = Bul bOn : Light2x. State
= Bul bOn 'TX
Case 6 :Light5x. State = Bul bOn : Lightlx. State
= Bul bOn ' 6BX
Case 5 :Light5x. State = Bul bOn
" bx
Case 4 :Light4dx. State = Bul bOn
" 4x
Case 3 :Light3x.State = Bul bOn
' 3X
Case 2 :Light2x. State = Bul bOn
'2X
case 1 :Lightlx. State = Bul bOn
" 1x
End Sel ect
I f const AddDebug = 1 Then HudBonusl. Text
= (Bonus) & & (mult) & End If
FOR DEMO PURPGCSES
end sub
CheckMul ti ()

Though some of the code is similar to MultiplierLight(), this handles the multiplier routines
when the player loses the ball and the bonus count starts. This actually controls the bonus
count, everytime the bonus is counted down to 0, it calls this subroutine to check if there is
still a bonus multiplier to do. Once the multiplier is finished (mult=0) then this routine will
send the engine to reset the table for a start of a new ball, and also to start the next ball in

play.

code:

Sub CheckMul ti ()
AddDebugText & (mult) &
' Press F9 instead of play icon in
editor to see debug info. (Read the manual)
If nmult >0 then '

If there is still a Miltiplier
Bonus = Hol dBonus
Restore total bonus collected during ball in play at
drain hit
If mult > Maxi munBonusMul tiplier Then nult
= Maxi munBonusMul tiplier:End If ' Forced

Bonus Val ue set by user

If nmult > 15 then mult = 15

Prevent nultiplier going over 15
Handles nmultiplier lights during a collect bonus

count

Lightlx State = Bul bOFf: Light2x. State
Bul bOF f: Light3x. State = Bul bOff: Light4x. State
Bul bOFf: Light5x. State = Bul bOF f
" Check for mult, add |ights needed
Sel ect Case nult
Case 15 : For z = 1 To 5 : eval(& z
&). State = Bul bOn: Next
15x

Case 14 : Lightb5x. State = Bul bOn : Light4x. State
Bul bOn : Light3x. State = Bul bOn : Light2x. State
Bul bOn : Lightlx. State = Bul bOf ' 14x
Case 13 : Lightb5x. State = Bul bOn : Light4x. State
Bul bOn : Light3x. State = Bul bOn : Lightlx. State
Bul bOn " 13x
Case 12 : Lightb5x. State = Bul bOn : Light4x. State
Bul bOn : Light3x. State = Bul bOn
12x
Case 11 : Lightbx. State = Bul bOn : Light4x. State
= BulbOn : Light2x. State = Bul bOn
11X

Case 10 : Lightb5x. State = Bul bOn : Light4x. State
= BulbOn : Lightlx.State = Bul bOn '

10x

Case 9 : Lightbx.State = Bul bOn : Light4x. State
= Bul bOn " Ox

Case 8 : Lightb5x.State = Bul bOn : Light3x. State
= Bul bOn '8x

Case 7 : Light5x.State = Bul bOn : Light2x. State
= Bul bOn 'TX

Case 6 : Light5x.State = BulbOn : Lightlx. State
= Bul bOn " 6X

Case 5 : Lightbx. State Bul bOn

5X
Case 4 : Lightd4x. State = Bul bOn

4x

Case 3 : Light3x.State = Bul bOn
" 3X

Case 2 : Light2x.State = Bul bOn
"2X

case 1 : Lightlx.State = BulbOn : Light2x. State
= Bul bOFf : AddDebugText
End Sel ect
End if
If mult = O then '
No nore nultipliers
Ti mer BonusEnabl ed = Fal se
" Turn off the tiner
Reset For NewPl ayer Bal |)
this calls reset bonus

AddDebugText & (mult) &
Drain2() " On to
End O Ball routines
El se " Hey, you

tilted you dummy
AddBonusLi ght §) '
Loser, never tilt during a bonus count
End If
End Sub ' end sub CheckMilti ()

O Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" to override any other music, lights, and
display routines until the time specified is finished. (mechanical sounds will still
play) While the music is playing, no other music/display/lights will be used, as this
is considered a main feature award and should have priority over anything else.
Easily create Web Help sites

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Generate EPub eBooks with ease

Mystery

Mystery
AddScoringEvent »

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/create-epub-ebooks

i‘{? Mystery

The mystery feature (common in Williams games) is a random award that will light up using
a timer for a specific period of time. The most notable game to have a mystery feature is
Black Knight (1980) but this feature is used as well under another name by other
companies. The score generated is a random score based on 2 values, a minimum and a
maximum value.

0 If You Have Never Coded Before

Just a reminder, to use this feature, the code should be encased within a subroutine
code: Sub fpxMTrigger_ Hit
"This is where your code goes....
End Sub

Using this code will award the Mystery value to the players score total. The engine will add
the mystery value in the other two messages (in Display/HUD 3 and 4)

code: " NOTE: You need to add nessages here (or just
| eave it as a default) for the displays.
' The engine will add the award in the other two
nmessages (in Display/ HUD 3 and 4)
Message(1) = - Message(2) =
AddScor i ngEvent
£ Settings
code: ' * Jackpot
f pxJackpotmin = 10000 " mnimum Jackpot a

pl ayer can score (Iln points) To turn off Jackpot,
set both mn and max values to O

f pxJackpot max = 250000 " Maxi mum Jackpot a
pl ayer can score (In points)

f pxSuper JackpotMul tiplier = 2 " nultiples the
exi sting Jackpot score by this multiplier

The settings for this feature can be found in the User Input Section at the top of the script.

M nMyst er yAwar d=5000

" Mn Mystery award
Myst er yAwar dMaxi um=25000

Max Mystery award
£ Changing the Display Message

You can change the message in the quotes if you wish to display a different message. Just
remember that you are limited to 9 characters per display.

€ Engine Code

This feature Event is part of the main engine core, and can be used for most object hit
events, such as a kicker. In the beginners tutorial, we use a star trigger, but you can delete
that if you wish. This is always "turned on" and no light or timer is assigned to it. Please
check the Vault section for any example that adds lights or timers (when available)

Not that the Mystery feature requires Randomize to be present in the script. Do not delete
the Randomize code, as you will get errors and the table will not start.

The Main AddScoringEvent Code

code: MysteryAward = (M nMysteryAward) +((int(rnd(1)*25))
*1000)
I f MysteryAwar d>M/st er yAwar dvaxi um
t hen Myst eryAwar d=Myst er yAwar dMaxi um
AddScor e(Myst er yAwar d)
AddMusi cSet
| F const AddDebug = 1 THEN AddDebugText
& (MysteryAward)

O Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" to override any other music, lights, and
display routines until the time specified is finished. (mechanical sounds will still
play) While the music is playing, no other music/display/lights will be used, as this
is considered a main feature award and should have priority over anything else.

In the Williams music set, Mystery uses the "radar" setting for the display.

Create help files for the Qt Help

Framework
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

Easily create HTML Help documents

Slingshots

Slingshots
AddScoringEvent »

(@ Slingshots

Built into fpxEngine are the slingshot code. There is also additional code that has been
added (such as the_ball color changing example) as demonstrations, but this page will just
deal with the main engine code. The slingshots above the flippers are pretty generic, and
have been used by the actual companies for nearly 60 years. Since they are all pretty much
the same, there is no need to go into detail.

© Hit Code

You will find the main code for the Slingshots in the Hit Code section.
The code for the ball changing example has been removed to make it easier to
understand.

code: Sub LeftSlingshot Rubber Hit() " The
Left Slingshot has been Hit
AddScor e(10) ' Add sone points.

W add the value in the brackets, in this case 10
points, to our score

AddScori ngEvent " Call
the preset routine for bulbs flashing/nusic etc
"Search for Const fpxBallBlinkingOh. 0 is off, 1 is
on. pgl92 of BAM main thread

End Sub

Sub Ri ght SI'i ngshot Rubber Hit () " The
Ri ght Slingshot has been Hit

AddScor e(10) " Add sone points.

W add the value in the brackets, in this case 10
points, to our score

AddScor i ngEvent
End Sub

© Engine Code

This feature Event is part of the main engine core, and has several objects that is part of
the table. These objects must be present in the table, deleting any of these objects will
cause a error message when you play the table. All other objects, such as ornaments, can
be safely deleted.
Objects needed

e LeftSlingshotBulbl,LeftSlingshotBulb2,RightSlingshotBulbl,RightSlingshotBulb2 (pf

https://www.helpndoc.com/feature-tour

bulb object)
e LeftSlingshotRubber,RightSlingshotRubber (rubber objects, set to slingshot)

Nearly all slingshots traditionally give 10 points on a ball hit, but you can add a different
value between the brackets in the AddScore line.

The slingshots are set to automatically "flash" the 2 playfield bulbs on a hit, and has
it's own mechanical sound that will play only when a game is being played and is not in
a tilted state.

The Main AddScoringEvent Code

code: case
Left Sl i ngshot Bul bl. Fl ashForMs 100, 50, Bul bOff
Flash the pf bulb lights in side the
slingshot, not really needed, just |ooks pretty
Left Sl i ngshot Bul b2. Fl ashForMs 100, 50, Bul bOFf
Pl ay Sound , (f pxSoundVol umne) " Sol noid
sound
AddMusi cSet
Case
Ri ght Sl i ngshot Bul b2. Fl ashForMs 100, 50, Bul bOf
Pl ay Sound , (f pxSoundVol ume)
AddMusi cSet

& Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" to override any other music, lights, and
display routines until the time specified is finished. (mechanical sounds will still
play) While the music is playing, no other music/display/lights will be used, as this
is considered a main feature award and should have priority over anything else.

Free Kindle producer
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easily create HTML Help documents

InLanes

InLanes
AddScoringEvent »

(i? In Lanes

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com/feature-tour

0 If You Have Never Coded Before

We are going to be dealing with working with a light to your table, and also now what
the script needs to do if that light is turned off, or turned on.

| would first recommend that you quickly review the light section in the fp manual first,
as it gives you a lot of very helpful information on some of the settings, and explains
them quite well. Just press the F1 key, or click on "Help" at the top menu in the
editor, and "Open Manual". Go all the way down to "Table Components", click on
that to expand the section, and then select "Lights" and finally "Round Lights" Whew,
it's actually harder to use the help file than it is to use the fpx engine so far isn't it...

Built into fpxEngine are the Inlane Trigger code. The Inlane is the path feeding a falling ball
from the playfield to the flippers, usually behind a slingshot. Some people refer to the
Inlanes as the "flipper Return Lanes". The code used by the fpxEngine for inlanes is a bit
more complex, as we also have a light object and additional coding based on the light
state.

© Hit Code

You will find the main code for the Inlanes in the Hit Code section. The code for both the
right and the left inlanes are basically the same, we look at the light object assigned to
each side (Li ght Left I nLaneTri gger and LightRi ghtlnLaneTri gger) and
determine what to do depending on whether that light is turned on or turned off. In this case,
the score is different, if the light is off, it gives 1000 points to the player, but if that light is on,
then the player will earn 5000 points. The player also collects a bonus point that is collected
at the loss of a ball. Note there is a seperate AddScoringEvent routine based on light state.
This is to have different music/ light effect for each bulb state.

Return lane to left flipper
Sub LeftlnLaneTrigger Hit()
| F Li ghtLeftl nLaneTrigger. St at e=Bul bOFf THEN

code:

" Look to see if light assigned is off first
AddScor € 1000) ' Add sone points.
a bit nore than before
AddBonus (1) ' Add to the Bonus

Count when the ball is |ost
AddScor i ngEvent '
Go to routine for nusic etc
END I F " I'm finished telling
you what to do if the bulb is off
If the bulb is lit, lets reward the player wth
a better score
| F Li ghtLeftl nLaneTri gger. St at e=Bul bOn THEN
Look to see if light assigned is on first
AddScor € 5000) " Add sone points
quite a lot to nmake the light on worthwhile
AddBonus (1) ' Add to the Bonus

fpxEngine

Count when the ball is |ost
AddScor i ngEvent '

Go to routine for nusic etc

END | F " I"'m finished telling
you what to do if the bulb is on
End Sub
" Return lane to Right flipper
Sub Ri ghtl nLaneTrigger_Hit ()

| F Li ght Ri ghtl nLaneTri gger. St at e=Bul bOFf THEN

Look to see if light assigned is off first

AddScor € 1000) " Add sone points.
a bit nore than before

AddBonus (1) ' Add to the Bonus

Count when the ball is |ost
AddScor i ngEvent '

Go to routine for nusic etc

END | F " I"m finished telling
you what to do if the bulb is off

" If the bulb is lit, lets reward the player wth
a better score

| F Li ght Ri ghtl nLaneTri gger. St at e=Bul bOn THEN

' Look to see if light assigned is on first
AddScor € 5000) " Add sone points.
quite a lot to nmake the Iight on worthwhile
AddBonus (1) ' Add to the Bonus
Count when the ball is |ost

AddScor i ngEvent '
Go to routine for nusic etc
END I F " I'"'m finished telling
you what to do if the bulb is on
End Sub

€ Turning on the InLane Lights

As part of the Beginners tutorial, we also have a example trigger that contains the code to
turn on the bulbs when a ball rolls over that trigger.

code: Sub TriggerlnlaneOn_Hit()
Li ght Leftl nLaneTri gger. State = Bul bOn
Li ght R ghtl nLaneTri gger. State = Bul bOn
AddScore(100)" Add sonme points. W add the value in
the brackets, in this case 10 points, to our score
AddScori ngEvent
End Sub

This is just a sample code, but what it does is turn on the Inlane lights, give a score for
rolling over that trigger, and play some music for that particular trigger being made.

118/251

€ Turning off the InLane Lights

The engine will automatically turn off the inlane lights at a loss of a ball, and have to be re lit
by the player with his next ball. The code is found in the AddEngineEvent subroutine, and in
the Case "NEW_BALL". AddEngineEvent are the hooks to the main portions of the
engine, and are there so you can add your own engine code or what you wish the engine to
do in one place, as opposed to going through thousands of lines of code. The
"NEW_BALL" case within AddEngineEvent handles all the code for the start of each new
ball, just before the ball is kicked out to the plunger. In this case, the lights are "switched off"
at the start of the next ball.

Note: We only include the code related to the Inlane/OutLane bulbs here, and have
removed the other code related to a new player(s) start of a ball.

code: ' * Code for start of each ball, and
what the system does
Case ' Called
From Reset For NewPl ayerBal | ()
" THIS I S WHERE YOU ADD YOUR CODE FOR THE START

OF EACH BALL !'!!!

Use this to turn on any lights, reset any
vari abl es you use, popup targets etc.

this switches off the lights used in the
I nl anes and Qutl anes

Li ght Left I nLaneTri ggerSt at e=Bul bOF f

Li ght Ri ght I nLaneTri ggerSt at e=Bul bOF f

Li ght Left Qut LaneTri ggerSt at e=Bul bOF f

Li ght Ri ght Qut LaneTri ggefSt at e=Bul b f

?

A Note

Built into fpxEngine are the ability to Alternate the Inlane or OutLane Lights. This feature
will alternate a lit Inlane or Outlane light as opposed to having the 2 lights for the Inlanes
and Outlanes always on. The lanes "switch" sides when ever the ball strikes a powered
slingshot, or if the ball strikes a Bumper.

If you want this feature, you will find the AddScoringEvent "AddAlternatingLanes" here

€ Engine Code

This feature Event is part of the main engine core, and has several objects that is part of
the table. These objects must be present in the table, deleting any of these objects will
cause a error message when you play the table. All other objects, such as ornaments, can
be safely deleted.
Objects needed

e LightLeftinLaneTrigger,LightRightinLaneTrigger (round light object)

e LeftinLaneTrigger,RightinLaneTrigger (trigger objects, set to "wire")

The Main AddScoringEvent Code

code: case " The
Left InLane trigger has been Hit

Pl ay Sound , (f pxSoundVol une)
Mechani cal Sound, not affected by tilt state
AddMusi cSet
set LastSwitchHt = LeftlnLaneTrigger
remenber last trigger hit by the ball, it's good
coding, but actually pretty useless at the nonent
case " The
Left InLane trigger has been Hit
Pl ay Sound , (f pxSoundVol une)
Mechani cal Sound, not affected by tilt state
AddMusi cSet
set LastSwitchHt = LeftlnLaneTri gger
renmenber last trigger hit by the ball, it's good

coding, but actually pretty useless at the nonent

Note that the engine has 2 routines for AddScoringEvent, one for each light state. We also
play a mechanical sound when the ball rolls over the trigger.

£ Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature will be overridden by any high priority feature, such as Extra
Ball or a special, but the player will still receive credit if this feature is made during
that time.

Write EPub books for the iPad
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easily create PDF Help documents

OutLanes

OutLanes
AddScoringEvent »

@ OutLanes
o If You Have Never Coded Before

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/feature-tour

We are going to be dealing with working with a light to your table, and also now what
the script needs to do if that light is turned off, or turned on.

| would first recommend that you quickly review the light section in the fp manual first,
as it gives you a lot of very helpful information on some of the settings, and explains
them quite well. Just press the F1 key, or click on "Help" at the top menu in the
editor, and "Open Manual". Go all the way down to "Table Components", click on
that to expand the section, and then select "Lights" and finally "Round Lights" Whew,
it's actually harder to use the help file than it is to use the fpx engine so far isn't it...

Built into fpxEngine are the OutLane Trigger code. These lanes are commonly refered to as
"Drain Lanes" as you usually lose the ball in play. The code is very much the same as the
Inlane Code, though Outlanes award higher scores and traditionally, award a special or
free game when "lit". The code used by the fpxEngine for OutLanes is a bit more complex,
as we also have a light object and additional coding based on the light state.

© Hit Code

You will find the main code for the OutLanes in the_Hit Code section. The code for both the
right and the left OutLanes are basically the same, we look at the light object assigned to
each side (Li ght Left Qut LaneTri gger and

Li ght R ght Qut LaneTr i gger) and determine what to do depending on whether that
light is turned on or turned off. In this case, the score is different, if the light is off, it gives
3000 points to the player, but if that light is on, then the player will earn 5000 points and in
this example, be awarded a special or free game. The player also collects a bonus point
that is collected at the loss of a ball as well as having the_jackpot amount increased. Note
there is a separate AddScoringEvent routine based on light state. This is to have different
music/ light effect for each bulb state.

code: Sub LeftQutLaneTrigger Ht()
| F Li ght Left Qut LaneTri gger. St at e=Bul bOFf THEN

" Look to see if light assigned is off first
AddScor € 3000) " add sone points
AddJackpot(3000) " Adds to

Jackpot total
AddBonug 1) ' adds to Bonus
score

AddScor i ngEvent ‘
run routine for nusic etc

END | F
| F Li ght Left Qut LaneTri gger. St at e=Bul bOn THEN
Look to see if light assigned is off first
AddScor € 5000) " add sone points
AddJackpot(5000) " Adds to
Jackpot total
AddBonug 1) ' adds to Bonus
score

NOTE: You need to add nessages here (or just
| eave it as a default) for the displays.

fpxEngine

Message(1) =
Message(2) =
Message(3) =
Message(4) =
AddScor i ngEvent

Automatically Awards Special.

BG& di spl ay/ sounds is

preset in AddEngi neEvent case "SPECI AL"
End | f
End Sub
Sub Ri ght Qut LaneTrigger Hit() The
Ri ght QutLane trigger has been Hit
| F Li ght R ght Qut LaneTri gger. St at e=Bul bOFf THEN

Look to see if light assigned is off first
AddScor € 3000) " add sone points
AddJackpot(3000) " Adds to
Jackpot total
AddBonug 1) ' adds to Bonus
score
AddScor i ngEvent '
run routine for nusic etc
END | F
| F Li ght R ght Qut LaneTri gger. St at e=Bul bOn THEN
" Look to see if light assigned is off first
AddScor € 5000) add sone points
AddJackpot(5000) " Adds to
Jackpot total
AddBonug 1) ' adds to Bonus
score
NOTE: You need to add nessages here (or just
leave it as a default) for the displays.
Message(1) =
Message(2) =
Message(3) =
Message(4) =

AddScor i ngEvent

Automatically Awards Special.

B& di spl ay/ sounds is

preset in AddEngi neEvent case "SPECI AL"
End |f
End Sub

The Outlanes, by tradition, can award a special, or free game, if either the
LightLeftOutLaneTrigger or LightRightOutLaneTrigger is lit. These use a very similar code
to the Inlane code, and by default, will award that special if the ball rolls over a lighted drain
lane. But because you only want to award a outlane special once per ball, there is a special
AddScoringEvent just for outlanes.

code: AddScoringEvent "OutLaneSpecial" " Automatically Awards Special.
BG/display/sounds is preset in AddEngineEvent case "SPECIAL"

£ Changing the Display Message

122 /251

You can change the message in the quotes if you wish to display a different message. Just
remember that you are limited to 9 characters per display. There are 4 message(x) to
display for each lane, as the message is displayed in all 4 displays.

€ Turning on the OutLane Lights

As part of the Beginners tutorial, we also have a example trigger that contains the code to
turn on the bulbs when a ball rolls over that trigger.

code: Sub TriggerQutlaneOn_Hit ()
Li ght Left Qut LaneTri ggeB6tate = Bul bOn
Li ght Ri ght Qut LaneTri gge$t ate = Bul bOn

AddScor ¢ 500) " Add sone points.
a bit nore than before

AddBonus (1) ' Add to the Bonus
Count when the ball is |ost

AddScor i ngEvent " did you know you
can mx and match AddScori ngEvents?
End Sub

This is just a sample code, but what it does is turn on the OutLane lights, give the score for
rolling over that trigger, and play some music for that particular trigger being made.

€ Turning off the OutLane Lights

The engine will automatically turn off the OutLane lights at a loss of a ball, and have to be re
lit by the player with his next ball. The code is found in the AddEngineEvent subroutine, and
in the Case "NEW_BALL". AddEngineEvent are the hooks to the main portions of the
engine, and are there so you can add your own engine code or what you wish the engine to
do in one place, as opposed to going through thousands of lines of code. The
"NEW_BALL" case within AddEngineEvent handles all the code for the start of each new
ball, just before the ball is kicked out to the plunger. In this case, the lights are "switched off"
at the start of the next ball.

Note: We only include the code related to the InLane/OutLane bulbs here, and have
removed the other code related to a new player(s) start of a ball.

code: ' * Code for start of each ball, and
what the system does
Case ' Called
From Reset For NewPl ayerBal | ()
" THIS I S WHERE YOU ADD YOUR CODE FOR THE START

OF EACH BALL !'!!!

Use this to turn on any lights, reset any
vari abl es you use, popup targets etc.

this switches off the lights used in the
Qut Lanes and CQutl anes

Li ght Left Qut LaneTri ggerSt at e=Bul bOF f

Li ght Ri ght Qut LaneTri ggefSt at e=Bul bCOF f

Li ght Left Qut LaneTri ggerSt at e=Bul bOF f

Li ght Ri ght Qut LaneTri ggefSt at e=Bul b f

l?

A Note

Built into fpxEngine are the ability to Alternate the Inlane or OutLane Lights. This feature
will alternate a lit Inlane or Outlane light as opposed to having the 2 lights for the Inlanes
and Outlanes always on. The lanes "switch" sides when ever the ball strikes a powered
slingshot, or if the ball strikes a Bumper.

If you want this feature, you will find the AddScoringEvent "AddAlternatingLanes" here

© Engine Code

This feature Event is part of the main engine core, and has several objects that is part of
the table. These objects must be present in the table, deleting any of these objects will
cause a error message when you play the table. All other objects, such as ornaments, can
be safely deleted.
Objects needed

e LightLeftOutLaneTrigger,LightRightOutLaneTrigger (round light object)

e LeftOutLaneTrigger,RightOutLaneTrigger (trigger objects, set to "wire")

The Main AddScoringEvent Code

code: case

AddMusi cSet
set LastSwitchHt = LeftQutLaneTri gger
remenber last trigger hit by the ball, it's
good coding, but actually pretty useless at the
noment
case
" special routine for CQutlanes. This repoints to
stock special code, and switches off special lights
at outl ane
Set Event Numi0 ' sets

case for TimerSetEventl. end of the routine, which
calls CreateNewBall ()

| F LockDi spl ay=1 THEN LockDi spl ay=0

W need to check IF there is another Event

going on first so we override it to run this next
code

AddEngi neEvent - AddMusi cSet

| F const AddDebug = 1 THEN AddDebugText

|F nvCredits < fpxMaxCredits THEN
f pxSpecial _Hit()
END | F
Have to renenber to swich those special l|ights
of f!
Li ght Left Qut LaneTri gger St at e=Bul bOf f
Li ght Ri ght Qut LaneTri gger St at e=Bul bOF f

Note that the engine has 2 routines for AddScoringEvent, one for each light state. case
"OutLaneSpecial" has a lot of additional code, it points to the main user special routine
(AddEngineEvent "SPECIAL")

£ Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature uses "LockDisplay" when a special is awarded to override any
other music, lights, and display routines until the time specified is finished.
(mechanical sounds will still play) While the music is playing, no other
music/display/lights will be used, as this is considered a main feature award and
should have priority over anything else. If the light state is off, then this feature will
be overridden by any high priority feature, such as Extra Ball or another special,
but the player will still receive credit if this feature is made during that time.

Create help files for the Qt Help

Framework
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

News and information about help authoring tools and
software

SpeciallsLit

SpeciallsLit
AddScoringEvent »

{i? Special Is Lit

Sometimes you just want to tell the player a special is lit to be collected (like at the
outlanes) so fpxEngine has code just for that...

code: Sub fpxMyTrigger_Hit
AddScoringEvent "SpeciallsLit" ' Tell Player a special can be
collected
End Sub

All this does is flash the text defined, play the music and then resets back to regular scoring
afterwards. Sub TriggerOutlaneOn_Hit() in the script has a example included already, but
here's a copy of that code.

code: Sub TriggerOutlaneOn_Hit()

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com

LightLeftOutLaneTrigger.State = BulbOn

LightRightOutLaneTrigger.State = BulbOn

AddScore(500) " Add some points. a bit more than
before

AddBonus (1) " Add to the Bonus Count when the
ball is lost

AddScoringEvent "trigger" " did you know you can mix
and match AddScoringEvents?

AddScoringEvent "SpeciallsLit" ' Tell Player a special
can be collected
End Sub

The Engine will automatically add the display message notifying the player that a special
has been lit. That code is found within the AddScoringEvent routine.

© Engine Code

There is none!

Create iPhone web-based
documentation

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free Kindle producer

25KAward

SpeciallsLit
AddScoringEvent »

(i? 25k Award

Sometimes you just want to award the player a special score for advancing past a certain
point. The fpxEngine has code just for that...

This just awards 25,000 points to the players score, 25,000 is added to the Jackpot value,
and 1 bonus is added to the Bonus count routine when the player loses his ball. This is a
pretty common feature with the arcade games, you see variations of this code, for example
the bally table "Space Invaders" plays a (very) annoying sound and turns on a light for a
single Drop Target on the right side for a limited amount of time. If you manage to hit that
target during the time period, you will receive a special score.

code: Sub fpxM/Trigger Hit

AddScori ngEvent "25kAwar d" " Awards a
25,000 point Bonus
End Sub

AddScori ngEvent "25kAward" just awards you 25.000
poi nts. Usually, you can have a light turn on for that so the
pl ayer knows it's a special feature he should be trying to

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

make. This is used by the Vault system as well, a good exanple
is the Drop Target Bank Vault item

€ Engine Code

AddScori ngEvent "25kAwar d"” " Awards a 25, 000
poi nt Bonus

Create iPhone web-based
documentation

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free HTML Help documentation generator

AddAlternatingLanes

{@ Alternating Lanes
0 If You Have Never Coded Before

We are going to be dealing with working with a light to your table, and also now what
the script needs to do if that light is turned off, or turned on.

| would first recommend that you quickly review the light section in the fp manual first,
as it gives you a lot of very helpful information on some of the settings, and explains
them quite well. Just press the F1 key, or click on "Help" at the top menu in the
editor, and "Open Manual". Go all the way down to "Table Components", click on
that to expand the section, and then select "Lights" and finally "Round Lights" Whew,
it's actually harder to use the help file than it is to use the fpx engine so far isn't it...

Built into fpxEngine are the ability to Alternate the Inlane or OutLane Lights. The Inlane is
the path feeding a falling ball from the playfield to the flippers, usually behind a slingshot.
Some people refer to the Inlanes as the "flipper Return Lanes". The Outlanes are the
"drain" lanes, to the side of the Inlanes. This feature will alternate a lit Inlane or Outlane light
as opposed to having the 2 lights for the Inlanes and Outlanes always on. The lanes
"switch" sides when ever the ball strikes a powered slingshot, or if the ball strikes a
Bumper.

£ Hit Code

To use this feature, you need to turn on either a Inlane or Outlane light and then call the
AddScoringEvent routine.

The fpxEngine will then handle the routine, as well as automatically alternate the lights when
ever a slingshot or Bumper is struck by the ball.

code: LightLeftinLaneTrigger.State=BulbOn ' If this is not on already, Turns on

a Inlane Light
AddScoringEvent "AddAlternatingLanes” ' Runs initial alternate light

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com

fpxEngine

code

As part of the Beginners tutorial, we also have a example trigger that contains the code to
turn on the bulbs when a ball rolls over that trigger.

© Pinsettings
In the user settings, you can turn "On" or "Off" the ability to have alternating Inlane or
Alternating Outlane lights. By default, Alternating the lane lights are turned "on".
As well, you can set if you want those lights (if lit) to "carry over" to that players next ball, or
if you require the player to start over. By default, this feature is turned "off".
code: '* Pinsettings
" You can set fpx to remember which lights were On or flashing at the loss
of a ball and restore those lights at the start
' of thats player new ball. This saves these values for each player. O is off
(no lights at next ball) 1 is On (restores lights
" at the next ball)
' *** Altermate Inlanes/Outlanes

fpxAlternatelnLanes = 1 " Alternate inlane light lens if on
fpxAlternateOutLanes = 1 " Alternate Outlane light lens if on
fpxMemoryinlanes=0 ' save light state of Inlane Lights for players
next ball
fpxMemoryOutLanes=0 ' save light state of Outlane Lights for
players next ball

Q Inlanes

The code needed for scoring is already within the fpxEngine template, as part of the hit
sections for both the_Inlanes and Outlanes. We first include the code related to the Inlane
Lights here, but the Outlane lights are very similar. You can have separate scoring for the
light state, it that particular Inlane Light is turned "off", then the scoring is generally a lot
lower than if that light is on. In the script, we look for the Off state first, and if that light is
actually turned off, we score 1000 points, add a bonus to the bonus count at the loss of a
ball, and play a AddScoringEvent routine for a unlit light.

Next, if that light is actually on, we score 5000 points, add a bonus to the bonus count at
the loss of a ball, and play a AddScoringEvent routine for a "lit" light.

code: 'Return lane to left flipper
Sub LeftinLaneTrigger_Hit()
IF LightLeftinLaneTrigger.State=BulbOff THEN ' Look to see if light
assigned is off first

AddScore(1000) " Add some points. a bit more than before
AddBonus (1) " Add to the Bonus Count when the ball is lost
AddScoringEvent "InLaneUnlit_bally81" ' Go to routine for music etc
END IF "I'm finished telling you what to do if the bulb is off

" If the bulb is lit, lets reward the player with a better score
IF LightLeftinLaneTrigger.State=BulbOn THEN ' Look to see if light
assigned is on first

AddScore(5000) " Add some points. quite a lot to make the
light on worthwhile

AddBonus (1) " Add to the Bonus Count when the ball is lost

AddScoringEvent "InLanelslit_bally81" ' Go to routine for music etc

END IF " I'm finished telling you what to do if the bulb is on
End Sub

128 /251

fpxEngine

' Okay, lets do the other inlane now...
" Return lane to right flipper
Sub RightinLaneTrigger_Hit()
IF LightRightinLaneTrigger.State=BulbOff THEN ' Look to see if light
assigned is off first

AddScore(1000) " Add some points. a bit more than before
AddBonus (1) ' Add to the Bonus Count when the ball is lost
AddScoringEvent "InLaneUnlit_bally81" ' Go to routine for music etc
END IF "I'm finished telling you what to do if the bulb is off

"If the bulb is lit, lets reward the player with a better score
IF LightRightinLaneTrigger.State=BulbOn THEN " Look to see if light
assigned is on first

AddScore(5000) " Add some points. quite a lot to make the
light on worthwhile

AddBonus (1) ' Add to the Bonus Count when the ball is lost

AddScoringEvent "InLanelslit_bally81" ' Go to routine for music etc

END IF "I'm finished telling you what to do if the bulb is on
End Sub

If you need more information, this section (AddScoringEvent) also has separate pages for
both_Inlanes

€ Outlanes

The Outlanes, by tradition, can award a special, or free game, if either the

LightLeftOutLaneTrigger or LightRightOutLaneTrigger is lit. These use a very similar code

to the Inlane code, and by default, will award that special if the ball rolls over a lighted drain

lane. But because you only want to award a outlane special once per ball, there is a special

AddScoringEvent just for outlanes.

code: AddScoringEvent "OutLaneSpecial" " Automatically Awards Special.
BG/display/sounds is preset in AddEngineEvent case "SPECIAL"

This code bypasses the normal special routines, and is completely separate. It has it's own

free game code, as it is used just for the Outlane specials, and needs to turn off the outlane

lights.

Here is the sample code for the Hit_Events of the Left and Right Outlanes:

code: Sub LeftOutLaneTrigger_Hit()
IF LightLeftOutLaneTrigger.State=BulbOff THEN ' Look to see if light

assigned is off first

AddScore(3000) "add some points

AddJackpot(3000) " Adds to Jackpot total

AddBonus(1) " adds to Bonus score

AddScoringEvent "OutLaneUnlit_bally81" " run routine for music etc
END IF

IF LightLeftOutLaneTrigger.State=BulbOn THEN " Look to see if light
assigned is off first

AddScore(5000) "add some points
AddJackpot(5000) " Adds to Jackpot total
AddBonus(1) ' adds to Bonus score

"NOTE: You need to add messages here (or just leave it as a default)
for the displays.

129/251

fpxEngine

Message(1)="SPECIAL"

Message(2)="SPECIAL"

Message(3)= "SPECIAL"

Message(4)="SPECIAL"

AddScoringEvent "OutLaneSpecial” " Automatically Awards
Special. BG/display/sounds is preset in AddEngineEvent case
"SPECIAL"

End If
End Sub
Sub RightOutLaneTrigger_Hit() ' The Right OutLane trigger has
been Hit

IF LightRightOutLaneTrigger.State=BulbOff THEN ' Look to see if light
assigned is off first

AddScore(3000) "add some points

AddJackpot(3000) " Adds to Jackpot total

AddBonus(1) ' adds to Bonus score

AddScoringEvent "OutLaneUnlit_bally81" " run routine for music etc
END IF

IF LightRightOutLaneTrigger.State=BulbOn THEN ' Look to see if light
assigned is off first

AddScore(5000) "add some points
AddJackpot(5000) " Adds to Jackpot total
AddBonus(1) " adds to Bonus score

"NOTE: You need to add messages here (or just leave it as a default)
for the displays.

Message(1)= "SPECIAL"

Message(2)="SPECIAL"

Message(3)="SPECIAL"

Message(4)="SPECIAL"

AddScoringEvent "OutLaneSpecial” " Automatically Awards
Special. BG/display/sounds is preset in AddEngineEvent case
"SPECIAL"

End If
End Sub

Like the Inlanes above, you need to turn on one of the Outlane lights as part of another
Hit_event subroutine, and then start the alternating lanes routine within the
AddScoringEvent system

code: LightLeftOutLaneTrigger.State=BulbOn ' Turns on a Outlane Light
AddScoringEvent "AddAlternatingLanes” ' Runs initial alternate light
code

But the fpxEngine has a additional option you can use, a special AddScoringEvent routine
that announces to the player that the special is in fact now lit, with a special display/music
and lighting routine. This is very useful for those situations where the game does not award
a special immediately.
code: LightLeftOutLaneTrigger.State=BulbOn ' Turns on a Outlane Light

AddScoringEvent "AddAlternatingLanes” ' Runs initial alternate light

code

AddScoringEvent "SpeciallsLit" ' prompt to inform the player a special is

lit.

130/251

€ Engine Code

This feature Event is part of the main engine core, and has several objects that is part of
the table. These objects must be present in the table, deleting any of these objects will
cause a error message when you play the table. All other objects, such as ornaments, can
be safely deleted.

Objects needed

LightLeftinLaneTrigger,LightRightinLaneTrigger (round light object)
LeftinLaneTrigger,RightinLaneTrigger (trigger objects, set to "wire")
LightLeftOutLaneTrigger,LightRightOutLaneTrigger (round light object)
LeftOutLaneTrigger,RightOutLaneTrigger (trigger objects, set to "wire")

The Main AddScoringEvent Code

code: case "AddAlternatingLanes"
IF LightLeftinLaneTrigger.State = BulbOn OR
LightRightinLaneTrigger.State = BulbOn THEN
If fpxAlternatelnLanes = 1 THEN
IF LightLeftinLaneTrigger.State = BulbOn THEN
LightLeftinLaneTrigger.State=BulbOff:LightRightinLaneTrigger.State =
BulbOn
ELSE
LightLeftinLaneTrigger.State=BulbOn:LightRightinLaneTrigger.State =
BulbOff
END IF
END IF
END IF
IF LightLeftOutLaneTrigger.State = BulbOn OR
LightRightOutLaneTrigger.State = BulbOn THEN
IF fpxAlternateOutLanes = 1 THEN
' run check so inlane and outlane lights will be on different sides. Set the
initial light to the same side as the outlane
IF LightLeftinLaneTrigger.State = BulbOn THEN
LightLeftOutLaneTrigger.State=BulbOn:LightRightOutLaneTrigger.State =
BulbOff:END IF
IF LightRightinLaneTrigger.State = BulbOn THEN
LightLeftOutLaneTrigger.State=BulbOff:LightRightOutLaneTrigger.State =
BulbOn:END IF
' Then switch that light to the other side
IF LightLeftOutLaneTrigger.State = BulbOn THEN
LightLeftOutLaneTrigger.State=BulbOff:.LightRightOutLaneTrigger.State
= BulbOn
ELSE
LightLeftOutLaneTrigger.State=BulbOn:LightRightOutLaneTrigger.State
= BulbOff
END IF
END IF
END IF

Note that the engine has 2 routines within this AddScoringEvent, one for each light state.
As well, the one AddScoringEvent handles both Inlanes and Outlanes at the same time,
and was written so if a Inlane is lit, and a Outlane is also lit, then those lights are set to be

on oppose sides.
& Music/Light/Display Code

This feature uses presets, so you do not have to change any music, light, or display code.
Because fpxEngine supports different music sets, the routines are different based on the
company era, the music is different, and the lightseq and type of flashing display may be
different between the various music sets. All routines are based on the interval (the total
time of the main music file in milliseconds) when this feature is made in game.

NOTE: This feature will be overridden by any high priority feature, such as Extra
Ball or a special, but the player will still receive credit if this feature is made during
that time.

Write EPub books for the iPad

Pages still being written

Pages still being written

(@ Manual pages still in progress

The pages within this section are being worked on so they can be a bit rough. As | go
along, | update the information in these pages and when the pages are finished, moved
to the regular sections within the manual.

Free iPhone documentation generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Produce online help for Qt applications

fpxAdvanceScore

fpxAdvanceScore
Pages still being written »

i"o fpxAdvance Score
LY

A very common scoring feature (especially on Bally Solid State games) in which a ball
rolls over a trigger, or hits a target, and the player is awarded a increasing score
depending on how many times the player has hit that target. Bally (and other
companies) usually had the advance score feature give a increasing amount of points
(most notably Centaur and Embryon) but they also used this feature to increase the
Bonus Multiplier, or light additional scoring features like "turn on" the Inlane lights.

The fpxEngine example uses a increasing value, with awarding a extra ball and special
if the player advances the lit value high enough.

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

© How it works

In the vault item, we use the design from eightball. A ball sent over the Star Rollover
advances the lite value, and awards the points based on the Lens Light Chain. It then
increases the next value and turns on the appropriate light for that value. You can have
up to 10 separate values (depending on the setting within the script) and is based on
stock Bally code that starts at 10,000 points, and increases the points by 10,000 to
50,000, a extra ball,a special, and then 50,000 points. The additional target when hit will
add a bonus to the advance score as well. The Star Rollover will also flash the bulb
lights for a set time as well (why not?)

This script also has a "pin setting” that is adjustable, to either have no lens lights on,
and a rollover awards 5000 points and then lights the first lens light for 10,000, or you
can have the engine light any lens light as it's starting value when ever a new ball is
created.

You can also set the code to reset the Advance Value back to it's initial first state if the
player(s) loses a ball and then starts a new ball in play, or you can "carry over" that value
to his next ball. The script will store this value by each player, and "remember" what that
player made in his previous ball and then restore that value with his next ball.

© How to use this Vault item in your fpx table.
(not ready to tell you yet)
€ Modifying the code for your table

Arcade pinball machines have "pin settings”, adjustable settings that allow the operator
to fine tune the difficulty level of the game. fpxEngine has several settings built in to
emulate those pin settings, and are based on the most common settings. Because of
FP's limitations in the amount of settings that can be saved when a table is first loaded
from the editor, fpx instead has these settings at the very top of the Vault script as part
of the Hit Code section.

The big advantage to this is these settings are "script-able” which means you can turn
on or off within your custom code. The actual code is just like pretty much everything
within fpx, is a single statement, and all pin settings built within fpx are just 2 values,
either a "0" (zero) to switch a feature Off, or a "1" to switch a feature on.

vfpxAVOn =1 - This turns on this Vault item, so any code within this Vault item will
execute when added to the fpxEngine core.

vfpxAVCaseStart = 1 - a pin setting, this tells the script which light and the value
associated with that light to turn on first at the start of a game or with the start of every
new ball.

vipxMemory = 1 - Instead of starting over from scratch at the start of a player(s) new
ball, this will remember the last state of Advance Value at the loss of a ball, and restore
that value when that player starts a new ball in play. This will store separate states for 4
players

AddUserfpxAV()

The very nature of the fpxEngine is to allow absolute beginners to build and create
complex tables with as little actual experience as possible, but you still need to learn a
tiny bit of coding sometimes. Most of the Vault items will be based on the actual
arcade table it came from, so it's just a quick copy and paste the design elements, the
code, and then adding lights in the LightList manager. This Vault item though is the
Master template | use to create those items from, so if you decide to use this vault
item, you can change the scoring quite easily by using the AddUserfpxAV() subroutine.

How the code works is once a Hit event is triggered, the code goes to AddfpxAV(),
which handles all the hard stuff, like lights and sound. AddfpxAV() then will send the
script to look at AddUserfpxAV() for the actual scoring. In this example, the score
increases by 10000 usually, awards a extra ball and a special, and then adds 50,000
points afterwards.

code: ' Allows you to set the scoring. Everything else is
done for you within the engine. You can add/change
anyt hi ng you want
like a nmultiplier or turning on Inlane lights etc.
See Begi nners Quide in nmanual
Sub AddUser f pxAV()
Sel ect Case vfpxAVCase

Case O

AddScor ¢ 1000) : AddJackpot (1000)
Case 1

AddScor ¢ 5000) : AddJackpot (5000)
Case 2

AddScor ¢ 10000) : AddJackpot (10000)
Case 3

AddScor ¢ 20000) : AddJackpot (20000)
Case 4

AddScor ¢ 30000) : AddJackpot (30000)
Case 5

AddScor ¢ 40000) : AddJackpot (40000)
Case 6

AddScor ¢ 50000) : AddJackpot (50000)
Case 7

AddScor i ngEvent
Case 8

f pxSpeci al _Hi(t)
Case 9

AddScor ¢ 50000) : AddJackpot (50000)
End Sel ect

End Sub

If you went through the Beginners Guide, you see it's pretty basic code, and is very easy to
change or to add to. You can make the score anything you want, and you can even add the
preset features from AddScoringEvent(), like turning on the inlanes, or increasing the
Bonus Multiplier. Lets add a example (if you wish to use this instead, you can, just copy this
code and delete the code in the script and replace it with this one)

code: ' Allows you to set the scoring. Everything else is

fpxEngine

done for you within the engine. You can add/change
anyt hing you want
like a nmultiplier or turning on Inlane lights etc.
See Begi nners Guide in nmanua
Sub AddUser f pxAV()
AddDebugText
& (vfpxAVCase)
Normal ly, we put the inlane/outlane lights in case
2, but fpx will turn those lights off at the |oss of
a ball,
and not turn them back on again,
so what we do is see if the case is 2 or nore, and
then turn those |ights back on on the next trigger
roll over when a
" new ball is in play.
| F vf pxAVCase>1 THEN
Li ght Left I nLaneTri ggerState = Bul bOn
Li ght Ri ght I nLaneTri ggerState = Bul bOn
END | F
Sel ect Case vfpxAVCase
Case O
AddScor ¢ 1000) : AddJackpot (1000)
Case 1
AddScor ¢ 5000) : AddJackpot (5000)
Case 2
AddScor ¢ 5000) : AddJackpot (5000)
AddDebugText
Case 3
AddScor ¢ 5000) : AddJackpot (5000)
Messagél) =
Messagé?2) =
AddScor i ngEvent
AddDebugText
Case 4
Messagél) =
Messagé€2) =
AddScor i ngEvent
AddDebugText
Case 5
AddScor ¢ 25000) : AddJackpot (25000)
AddDebugText
Case 6
Messagél) =
Messagé 3) =
AddScori ngEvent
AddDebugText
Case 7
AddScor ¢ 5000) : AddJackpot (5000)
AddScor i ngEvent
AddDebugText

135/251

Case 8
AddScor ¢ 5000) : AddJackpot (5000)
Li ght Left Qut LaneTri gge6tate = Bul bOn
Li ght Ri ght Qut LaneTri gge$tate = Bul bOn
Message(1) = - Message(2) =
- Message(3) = - Message(4) = " Add
Messages for the display
AddScor i ngEvent '
Tell Player a special can be collected
AddDebugText
Just for ne actually..
Case 9
Messagél) =
Messagé?2) =
AddScor i ngEvent
AddDebugText
End Sel ect
End Sub

Default scoring is 5000 points for this example, but with several things, we don't need to
add the default scoring, as features like the Mystery have their own scoring.

Case 2 would normally turn on the Inlane Lights. Instead, we tell the script to turn on the
lights every time the ball rolls over the trigger, and vf pxAVCase is a value of 2 or
greater. fpx will automatically turn off those lights at the loss of a ball, so you would
want to turn them back on at the start of a new ball and the ball rolls over the trigger
during that next ball.

Case 3 adds a multiplier. You do have message code for this, so you need to have it
in. This advance the multiplier by one.

Case 4 awards a Mystery which is a random score. You do have message code for
this, so you need to have it in.

Case 5 awards 25000 points (common with Bally games) There are no special
routines like AddScoringEvent or AddMusicSet, this just adds 25,000 points.

Case 6 awards a Jackpot. We removed the AddScore code, as we are getting points
from a super jackpot instead. You do have message code for this, so you need to
have it in

Case 8 we replace the special feature that will automatically award a special and
instead light the outlanes instead to award a special. We also add a ‘prompt"
message to tell the player there's a special at the Outlanes to be rewarded with
AddScori ngEvent)

Case 9 awards a Super Jackpot. We removed the AddScore code, as we are getting
points from a super jackpot instead. You do have message code for this, so you need
to have it in

Of course, as the engine matures, there will be a lot more preset features added to
AddScoringEvent, this is just a example. Advanced coders can of course add their
own code.

The two Rubbers...

In the eightball design, there are two rubbers, one at the top to form the right side of

the guide lanes (Rubber f pxAV1) and a second rubber (Rubber f pxAV2) just
below the single target to form the left side of the loop, and to give some bounce for
the Bumpers. Both rubbers have single leaf switches included, as the Bally arcade
table scored 10 points on a hit to either rubbers. This code is not included within this
vault item, but you can add it in if you wish. These just add 10 points to your score.
Down the road, when support is added in, you can also alternate the Inlane and
Outlane lights as well.

code: Sub RubberfpxAVl Hit()
AddScore (10)
AddScor i ngEvent
End Sub
Sub RubberfpxAV2 Hit ()
AddScore (10)
AddScor i ngEvent
End Sub

Note that we just use the same code for a unlit Inlane rollover, (AddScor i ngEvent
") as it has the music and mechanical sound already in place.

Most Solid State games had a very limited sound and music set, so the sounds were
reused for multiple scoring objects

© List of Objects used for this Vault Item

?

* ' A Note To Coders

Even though this Vault item comes complete with a design based on a actual pinball
game, you can remove the excess objects in your editor and use the scripted objects
within a new or different design. If though you remove/delete a scripted object from
the editor and then run the game, you will get a error, so you have to keep all the
scripted objects in the editor.

Scoring objects
e TriggerfpxAV (scores Advance Bonus)
e TargetfpxAV (secondary target, lights TriggerfpxAV to add bonus

Light lens

e LightfpxAVsr (used as a star rollover with TriggerfpxAV)

e LightfpxAVtarg (target lens light)

e LightfpxAV1, LightfpxAV2, LightfpxAV3, LightfpxAV4, LightfpxAV5, LightfpxAVeb,
LightfpxAVsp (light lens to show the present Advance Score value, from 10,000 to
50,000, extra ball and Special

e BulbfpxAV1, BulbfpxAV2, BulbfpxAV3, BulbfpxAV4 - play field bulbs
RubberfpxAV1, RubberfpxAV2 - rubbers with leaf switches to score points. NOTE:
these are not scripted, you have to add the code yourself (see above) so you can
safely delete these rubbers if you don't want to use them.

Variables
e VvifpxAVOn

vipxAVOn is mostly used for the engine, and is used to prevent errors in game play if
there are objects missing. By default as a vault item, vfpxAVOn is set to be active
(vipxAVON=1). This is strictly fpxEngine code, when vipxAVOn is set to), or it's not
active or not to be used, the engine will bypass any routines within the engine core,
and any errors as well if you decide to not use this vault item. You can though, by
adding in your own code, switch this vault item on or off, just don't forget to change it
back afterwards.

e vfpxAVCaseStart
vipxAVCaseStart is the main variable used to determine which lens light is turned on,
and what will score with that light. A very common arcade pin setting was the ability for
the operator to set whether the first lens light in the chain would be turned on at the
start of a game or with each new ball, or no light and require the player to make a
additional shot to start the light chain (Bally's Star Trek is a perfect example).
vipxAVCaseStart though can start at ANY value, so having vipxAVCaseStart=2 means
the 20k light will be lite, or vipxAVCaseStart=5 means the 50k light will be lite. Again,
this can be script_able within your custom code, like having the extra ball light in the
chain lit on the last ball if the player doesn't do very well in his game. Case advances
by 1 every time till maxed out at 9, which then constantly repeats case 9 until it is reset.

e vipxMemory
Another very common feature with pin settings was the ability to have previously made
shots "carry over" to the next players ball when it becomes his turn to play. By setting
vfpxMemory=1, this feature will store the Advance Value shots made, and restore
those values for each player that each player had made with their next ball. Setting this
to) will automatically set the Advance Bonus to it's beginning game starting points
(vfpxAVCaseStart) and for every ball, no matter how many players are playing a game.

e vfpxAVCase
The name used for the Select Case in ClosefpxAV(). This handles the light and bulb
routines when fpxAdvanceScore is reset or it's initial starting values when a game is
started.

e vfpxAVLights(9,9),vfpxAVBulbs(9,9)
A simple coding trick, used with vf pf AVLi ght Count and vf px
AVBuUl bCount to handle turning on or off all the lights or bulbs using a for/next loop.
The big advantage is it's automated, and you can add more or less lights if you need
to, as you use the SetLight statements, and both variables are just the total number for
lights and bulbs. This example will switch off all the lens lights, with vfpxAVLightCount
setto 9

code: FOR x = 1 TO (vf pxAVLi ght Count)

vf pxAVLi ght s(1, x) . St at e=Bul bOF f
NEXT

You will notice 2 numeric values are defined, the first is for groups, the second number is
for the number of the light/bulb within that group, so you can have 10 groups (0 to 9) each
with 10 lights or bulbs in them. This is really more for future Vault items.

e vfpxAVLightCount
Is the total amount of lights. This is used mostly for for/next code, as it makes adding
and deleting more lights very easy. The lens lights are defined within a SetLight

routine (vfpxAVLights)

e vipxAVBulbCount
Is the total amount of playfield bulbs. This is used mostly for for/next code, as it makes
adding and deleting more lights very easy. The bulbs are defined within a SetLight
routine (vfpxAVBulbs)

o fpxAVpl,fpxAVp2,fpxAVp3,fpxAVpa
These are simple memory variables for each player, that holds the amount of
advances a player has made. There is one for each player, and each one is seperate
from the others. We generally just use this for multiplayer games, and only if
vipxMemory=1

Subroutines

e TriggerfpxAV_Hit() - Hit event - scores Advance Value
AddUserfpxAV() - The scoring routine completely adjustable. Allows you to set the
scoring to what you want.
TargetfpxAV_Hit() - Secondary target adds bonus to TriggerfpxAV
AddfpxAV() - Main Advance Value Routine

e ClosefpxAV() - handles the lights and bulbs during advance value, and is also used to
reset the lights at game start/new ball/game end

o fpxResetVaultBallReset() - reset routine for each new ball in play

o fpxResetVaultGameReset() - resets routine so start of each game, clears main
variables

e vipxAVMemorySave() - at loss of ball, saves to player memory
vipxAVMemoryLoad() - at start of a ball, restores any collected values and lights for
that player (if enabled and only if vipxMemory=1)

Hooking up to the Engine

NOTE: for the time being, we use AddEngineEvent() to hook up code, and not "hard
coded" directly in the main engine script. This depends on the various Vault scripts, and
how much coding is needed in the future to have them automatically recognized in your Hit
Code.

You need to tell the script what to do at the start of a game, a new ball, and at the end of a
game, so for this we use AddEngi neEvent () and it's preset hooks as it's a lot simpler
and generally fool proof to use as opposed to going through hundreds of lines of very
advanced code. (If you need to review AddEngineEvent again, you will find a good basic
tutorial in the Beginners Guide). It's actually pretty simple to add, only 3 calls, one to Start a
game, one for each ball, and one for the end of game. The code is already in for you, this
example is for those who wish to use this code in non-fpx tables or to translate for the vp
editor.

This example is just the case settings and the single line to point to this routine, with
everything else stripped out.

code: Sub AddEngi neEvent (Set Event)
Sel ect Case Set Event

fpxEngine

" * Before the first ball pops out when a gane is
started

Case

" * VAULT

f pxReset Vaul t GaneReset () ' resets all Vault Itens
by gane

* Code for start of each ball, and what the system
does
Case

* Vaul t
f pxReset Vaul tBal | Reset () ' Vault code to restore
all vault itenms to initial defaults or saved nenory
state

" * When all balls done, match over and the gane is
fini shed.
Case
* Vaul t
f pxReset Vaul t GaneReset () 'Reset vault itens

End Sel ect
End Sub

Sof pxReset Vaul t GaneReset () needs to be added at the start and end of a game,
and f pxReset Vaul t Bal | Reset () needs to be added for when a new ball is started. If
you use this for other tables, you may have to adjust accordingly and add one of these 2
subroutine calls to other areas like tilt restore etc.

€ Code
Copy of basic Advance Scoring code

code:
*** fpx Vault Advance Score ***
" * User adjustable and scriptable settings
" Turns on or off this vault itemIf set to O then
this code is disabled.
' Set to 1 to use this vault item conplete with
code and objects
vf pxAVOn=1
" Initial light to be lit in vfpxAVLights for start
of each ball
" Set to 1 to start at 5000pts, 2 to start at
10000pts etc (9 max)
vf pxAVCaseStart = 1
Handl es the Menory feature for Advance Score
(common pin setting)
Set to one if you want the players Advance Score
carried over to his next ball

140/ 251

Set

fpxEngine

to O to have Advance Score reset

begi nning with each new ball.

vf pxMenory=1'

back to

Variable to hold Advance Score Val ue

this

from ball to Ball (for each player)
" Star Rollover trigger advances lit value
Sub TriggerfpxAV_H t()
Pl aySound
I f vfpxAVOn=1 THEN Only if
feature is set to "1" and nothing el se
Addf pxAVY)
I f LightfpxAvVsr. State=Bul bOh THEN AddBonus(1)
END | F
set LastSwitchHt = TriggerfpxAV

End Sub

done for

Al'lows you to set

anyt hing you want

See Begi nners Cuide

like a nmultiplier

Sub AddUser f pxAV()

for

Sel ect

Case O

you within the engine.

t he scoring.

or turning on
i n manual

Case vfpxAVCase

AddScor ¢ 1000) : AddJackpot (1000)

Case 1

AddScor ¢ 5000) : AddJackpot (5000)

Case 2
AddScor ¢ 10000)
Case 3
AddScor ¢ 20000)
Case 4
AddScor ¢ 30000)
Case 5
AddScor ¢ 40000)
Case 6
AddScor ¢ 50000)
Case 7
AddScor i ngEvent
Case 8
f pxSpeci al _Hi(t)
Case 9
AddScor ¢ 50000) :

End Sel ect
End Sub

Addi ti ona
bonus

Tar get

- AddJackpot (10000)
- AddJackpot (20000)
- AddJackpot (30000)
- AddJackpot (40000)

- AddJackpot (50000)

AddJackpot (50000)

scores points,

Sub TargetfpxAV_Hit ()
IF (fpTilted
TRUE) OR (Ganel nProgress=0) THEN Exit Sub: END I F
I f vfpxAvOn=1 THEN '

141 /251

only if

Everything else is
You can add/change

Inlane lights etc.

[its TriggerfpxAV

this

fpxEngine

feature is set to "1" and nothing el se
| F Li ghtfpxAVtarg. Stat e=Bul bOFf THEN
AddScor ¢ 5000) : AddJackpot (5000) : AddBonus
(1) : AddMusi cSet
ELSE
AddScor ¢ 1000) : AddJackpot (1000) : AddBonus
(1) : AddMusi cSet
END | F

Li ght f pxAVt ar g
. St at e=Bul bOn: Li ght f pxAVsr. St at e=Bul bOn
END | F
set LastSwitchHit = Targetf pxAV
End Sub
*** Engine Code DO NOT CHANGE, DO NOTI DELETE OR
CHANGE ***

R R S I I i b b b b b B I S S S S I R R I S S S b b b b S S I i b b b S I I I S

*hkkkkhkhkhkhkkhkrkkkhkikhkh*x

oRx Vaul t

R I S S S I I b b b b b B I S S I R R I S S I S S S b b b b i S I R i Sk b b b b S i b b b

*khkkkkhkhkhkhkkhkrkkkkrikikh*x

' *** fpxAddVal ue ***
D m vf pxAVOn, vf pxAVCaseSt art, vf pxMenory
" User adjustable settings (pin settings)
D m vf pxAVCase, vf pxAVLiI ght s(9, 9), vf pxAVBuUIl bs(9, 9)
control case for Advance Val ue.
Di m vf pxAVLiI ght Count , vf pxAVBuUl bCount
' Used in for/next |oops so you can have as many
l[ights as you want with changing the script.
D m f pxAVpl, f pxAVp2, f pxAVp3, f pxAvp4 '
variables to hold aV for each player (vfpxMenory)
' Single Lens Lights
Set vfpxAVLights(1,1)
=Li ght f pxAV1: Set vf pxAVLi ghts(1, 2)
=Li ght f pxAV2: Set vf pxAVLI ghts(1, 3)
=Li ght f pxAV3: Set vf pxAVLi ghts(1, 4)=Li ghtf pxAv4
Set vf pxAVLi ghts(1,5)
=Li ght f pxAV5: Set vf pxAVLI ghts(1, 6)
=Li ght f pxAVeb: Set vf pxAVLi ghts(1, 7) =Li ght f pxAVsp
" bul bs
Set vfpxAVBuUl bs(1, 1) =Bul bf pxAV1l: Set vf pxAVBuUl bs(1, 2)
=Bul bf pxAV2: Set vf pxAVBul bs(1, 3) =Bul bf pxAV3
Set vf pxAVBuUl bs(1, 4) =Bul bf pxAV4
Total anount of bulbs/lights in this group (used
for scriptwi de For/Next |oops)
vf pxAVLi ght Count = 7: vfpxAVBul bCount = 4
" Main scoring routine.

142 /251

fpxEngine

" On trigger rollover, vfpxAVCase increases by one,
then runs that nunber in the matching case
Sub Addf pxAV()

IF (fpTilted
= TRUE) OR (Ganel nProgress=0) THEN Exit Sub: END | F
I f vfpxAVOn=1 THEN " Only if

this feature is set to "1" and nothing el se
FOR x = 1

To

(vf pxAVLI ght Count) : vf pxAVLi ght s

(1, x).State=Bul bOF f: NEXT " Al lens lights off
first

vf pxAVCase = vf pxAVCase+l '
I ncreases value by 1 for select case routines
| F vfpxAVCase > 9 THEN vfpxAVCase = 9:END I F
Prevents case from going beyond 9, because no
scoring
Ti mer Cl oseScori ngEvent Case = 1: LockDi spl ay=0
Points to the closing routines after the
timers are done
Sel ect Case vfpxAVCase
Case O " Error catcher
AddMusi cSet
" Flash bul bs. This uses the tinmer interval in
AddMusi cScore and resets to on afterwards
FOR x = 1
TO vf pxAVBuUl bCount : vf pxAVBuUl bs(1, x) . Fl ashFor Ms
(Musi cl nterval Ti me),
(Fl ashFor MsBl i nkl nterval), Bul bOn: NEXT

Case 1 " No light on, scores 5000
AddMusi cSet
FOR x = 1

TO vf pxAVBuUl bCount : vf pxAVBuUI bs(1, x) . Fl ashFor Ms
(Musi cl nterval Ti me),
(Fl ashFor MsBl i nkl nterval), Bul bOn: NEXT
Case 2 ' scores 10000
AddMusi cSet

- Di spl ayBl i nkl nt erval =(Fl ashFor MSBI i nkl nt er val +40)
vf pxAVLi ght g1, 1) . Fl ashFor Ms
(Musiclnterval Tine), (DisplayBlinklnterval), Bul bOn
' Need to put code here as it uses the
musi clnterval tinmer from AddMusi cSet
FOR x =1
TO vf pxAVBuUI bCount : vf pxAVBuUI bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MSBI i nkl nterval), Bul bOn: NEXT
Case 3
AddMusi cSet

143 /251

: Di spl ayBl i nkl nt er val =(Fl ashFor MSBI i nkl nt er val +30)
vf pxAVLi ght 1, 2) . Fl ashFor Ms
(Musiclnterval Time), (DisplayBlinklnterval), Bul bOn
FOR x =1
TO vf pxAVBuUl bCount : vf pxAVBuUIl bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MSBI i nkl nterval), Bul bOn: NEXT
Case 4
AddMusi cSet

: Di spl ayBl i nkl nt er val =(Fl ashFor MSBI i nkl nt er val +20)
vf pxAVLi ght € 1, 3) . Fl ashFor Ms
(Musiclnterval Time), (DisplayBlinklnterval), Bul bOn
FOR x =1
TO vf pxAVBuUl bCount : vf pxAVBuUIl bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MSBI i nkl nterval), Bul bOn: NEXT
Case 5
AddMusi cSet

: Di spl ayBl i nkl nt er val =(Fl ashFor MSBI i nkl nt er val +10)
vf pxAVLi ght 1, 4) . Fl ashFor Ms
(Musiclnterval Time), (DisplayBlinklnterval), Bul bOn
FOR x =1
TO vf pxAVBuUl bCount : vf pxAVBuUIl bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MSBI i nkl nterval), Bul bOn: NEXT
Case 6
AddMusi cSet

: Di spl ayBl i nkl nt er val =(Fl ashFor MSBI i nkl nt er val)
vf pxAVLi ght €1, 5) . Fl ashFor Ms
(Musiclnterval Time), (DisplayBlinklnterval), Bul bOn
FOR x =1
TO vf pxAVBuUl bCount : vf pxAVBuUIl bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MSBI i nkl nterval), Bul bOn: NEXT
Case 7
FI ushDi spl ay) " Cear display
or no nessages wll appear
Message(1) = - Message(2) =
- Message(3) = - Message(4) =
FOR x =1
TO vf pxAVBuUl bCount : vf pxAVBuUI bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MSBI i nkl nterval), Bul bOn: NEXT
Case 8
Fl ushDi spl ay) " Clear display
or no messages wll appear
vf pxAVLi ght 1, 5) . St at e=Bul bOn
FOR x =1

TO vf pxAVBuUl bCount : vf pxAVBuUIl bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MsBI i nkl nterval), Bul bOn: NEXT
Case 9
AddMusi cSet

: Di spl ayBl i nkl nt er val =(Fl ashFor MSBI i nkl nt er val)
vf pxAVLi ght g1, 5) . Fl ashFor Ms
(Musiclnterval Time), (DisplayBlinklnterval), Bul bOn
FOR x = 1
TO vf pxAVBuUl bCount : vf pxAVBuUIl bs(1, x) . Fl ashFor Ms
(Musiclnterval Ti me),
(Fl ashFor MsBI i nkl nterval), Bul bOn: NEXT
End Sel ect

AddUser f pxAV) ' Goto scoring
code as set by devel oper
vf pxAVMenor ySay g ' Save
vf pxAvVCase for this player if vfpxMenory=1
ELSE " This Vault itemis
di sabled so just |eave the subroutine
Exit Sub
END | F
End Sub
runs the correct light routine and restores proper

light if vfpxMenory=1
Sub d osef pxAV()
AddDebugText
I f vfpxAVOn=1 THEN " Only if
this feature is set to "1" and nothing else
FOR x = 1
To (vfpxAVLi ght Count): vfpxAVLIi ghts(1,x). State
= BulbOf: NEXT ' we turn off all the lights first
before we update the scoring
FOR x = 1
TO vf pxAVBuUl bCount : vf pxAVBUl bs(1, x). State
= Bul bOn: NEXT
Sel ect Case vfpxAVCase ' Sets
next light to display
Case 0: Exit Sub
Case 1:vfpxAVLights(1,1). State
= Bul bOn: vf pxAVLi ghts(1,1). Fl ashFor Ms
(Musi clnterval Ti me
/2), (FlashForMSBli nklnterval), Bul bOn ' 1k, [|ight
10k light for next case
Case 2: vfpxAVLights(1,2).State
= Bul bOn: vf pxAVLI ght s(1, 2). Fl ashFor Ms
(Musiclnterval Ti nme
/2), (FlashForMsSBlinklnterval),BulbOnh ' 10
Case 3:vfpxAVLights(1,3).State
= Bul bOn: vf pxAVLi ghts(1, 3). Fl ashFor Ms

(Musiclnterval Ti nme

/2), (FlashForMsSBlinklnterval),BulbOnh ' 20
Case 4: vfpxAVLIights(1,4). State

= Bul bOn: vf pxAVLi ghts(1, 4) . Fl ashFor Ms

(Musi clnterval Ti me

/2), (FlashForMsBlinklnterval),BulbOnh ' 30
Case 5:vfpxAVLights(1,5). State

= Bul bOn: vf pxAVLI ght s(1, 5) . Fl ashFor Ms

(Musi clnterval Ti me

/2), (FlashForMSBlinklnterval),BulbOnh ' 40
Case 6: vfpxAVLights(1,6). State

= Bul bOn: vf pxAVLI ght s(1, 6) . Fl ashFor Ms

(Musiclnterval Ti me

/2), (FlashForMsSBlinklnterval),Bul bOn ' 50
Case 7:vfpxAVLights(1,7). State

= Bul bOn: vf pxAVLI ght s(1, 7). Fl ashFor Ms

(Musiclnterval Ti me

/2), (FlashForMsSBlinklnterval),BulbOn ' Extra Bal
Case 8: vfpxAVLIights(1,5).State

= Bul bOn: vf pxAVLi ghts(1,5). Fl ashFor Ms

(Musi clnterval Ti me

/2), (FlashForMsSBIinklnterval),BulbOh ' Speci al
Case 9: vfpxAVLi ghts(1,5). State=Bul bOn ' No need

to add blinking light effect here as done in

Addf pxAV()
END SELECT

END | F

End Sub

" Blanket reset used for tilt, new ball, Startup or

gane over

Sub fpxReset Vaul t Bal | Reset ()

AddDebugText
Advance Count

| F vf pxAVOn=1 THEN

I f vfpxMenory=1 Then " Look to
see if player nmenory feature is on
vf pxAVMenor yLodd " Load in

| ast vf pxAVCaseStart nade from | oss of previous bal

ELSE

vf pxAVCase(vf pxAVCaseSt art) '

reset vfpxAVCase back to the beginning

END | F

" fpx wll use the last interval tine played, so
we need to set the interval time here instead.

Musi cl nt erval Ti me

= 250
- Cl osef pxAV() : Li ght f pxAVsr
. St at e=Bul bOF f: Li ght f pxAVt ar g. St at e=Bul bOF f

END | F
End Sub

fpxEngine

" runs at gane start and gane end.
" This resets the variables or the next ganme wl|
continue on with the scoring nade from previ ous gane
Sub f pxReset Vaul t GaneReset ()
| F vf pxAVOn=1 THEN

FOR x =1
To (vfpxAVLi ght Count): vfpxAVLIi ghts(1,x). State
= BulbOf: NEXT ' we turn off all the lights first
before we update the scoring

FOR x = 1
TO vf pxAVBuUl bCount : vf pxAVBuUIl bs(1, x). State
= Bul bOn: NEXT

vf pxAVCase=(vf pxAVCaseSt art) : f pxAVpl=(vf pxAVCaseSt ar
t): fpxAVp2=(vfpxAVCaseStart) : fpxAVp3=(vf pxAVCaseSt ar
t): f pxAvp4=(vf pxAVCaseStart)

END | F

End Sub
' Saves the vfpxAVCase settings for each player at
the loss of a ball if vfpxMenory=1

Sub vf pxAVMenorySave()
| F vf pxAVOn=1 THEN
Sel ect Case Current Pl ayer
Case 1:fpxAVpl=vfpxAVCase
Case 2:f pxAVp2=vf pxAVCase
Case 3:fpxAVp3=vfpxAVCase
Case 4:f pxAVp4=vf pxAVCase

End Sel ect
END | F
End Sub
Loads the vfpxAVCase settings for each player at
the start of a ball, and restores that value back on

his next ball if vfpxMenory=1
Sub vf pxAVMenor yLoad()
| F vf pxAVOn=1 THEN
Sel ect Case CurrentPl ayer
Case 1: vfpxAVCase=f pxAVvpl
Case 2: vfpxAVCase=f pxAVp2
Case 3: vfpxAVCase=f pxAVp3
Case 4: vf pxAVCase=f pxAVp4
End Sel ect
END | F
end sub

Full-featured multi-format Help
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easy EPub and documentation editor

147 /251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com

More fpxEngine Presets

More fpxEngine Presets
Pages still being written »

{i? More fpxEngine Presets

Free Kindle producer
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.
Easily create Qt Help files

The Vault

"i? The Vault

The Vault system is the true magic behind the fpxEngine. These are a collection of
designed and coded templates of small design elements that you can use within your table
design to build a pinball table from scratch. All you need to do is select which Vault
templates you wish to use, copy and paste the design and the script into the master
template, and you are pretty much done. A average simple design should take about 1/2
hour to do, and it will work as soon as you press play. As time goes on, more and more
vault templates will be added.

Each vault page in this manual shows a image for how that vault will look, and gives a
complete description of what the vault does, how it scores, and how to modify the vault for
your own set of rules. Also incuded is a copy of the master script, so you can study how it
all works and reuse the master script (refered to as "worksheets") for your own code, or to
duplicate.

e How to use a vault item
e How to use the worksheets, complete with a tutorial for advanced coders.

)

A Note To Coders

The Vault is a very powerful system, it is recommended that you go through the Using
the Vault Worksheets page in this manual before you modify or make your own vault
items. This details all the variables and subroutines used for the vault, how to name
those, as well as information on a simple way to hook them up into the fpxEngine.

This section details all the individual Vault items, and explains what they do. This also gives
you the information you need to change any "pinsettings”, as well as a description of the
main scoring subroutines and a list of the objects needed for the script. Everything related
to these features will be placed in their page, including (in future versions) alternate code
examples, additional commands you can use, and sections on modifying the code to do

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com/feature-tour

more advanced routines. As well, with future releases of fpxEngine, new scoring features,
such as multiball or new features written for the vault will be added.

C Vault Items
Drop targets StandUp targets Triggers
e vault fpxDropTargetBankl e vault fpxTarget3Bankl e vault fpxAV1
e vault fpxDropTargetBank2 e vault fpxTarget3Bank2 (Advance value)
Kickers Plastics and Spare Parts
e vault fpxKickerl e vault_fpxPlasticsl

Single source CHM, PDF, DOC and HTML Help creation

How to use the Vault

Vault - How To use the Vault Items

{;.? Vault - Using the Vault items

0 How to use a Vault Item in the fpxEngine

Using this Vault item and including it in your table design is very simple. It's just a
couple copy and pastes from one fpt file to another!

- Open up the fpxEngine Template fpt file in your Future Pinball Folder
- Open up and select the Vault item fpt file from the Vault folder included with the
fpxEngine program
- Make sure ALL the layers are visible in the editor. Go to the top menu, Select
"Edit",then select "Select All". All the table elements should highlight
- Then Select "Edit" again, and click "Copy". Select "Edit",Then select "Select
All"
- Go back to the fpxEngine, go to the top menu, Select "Edit",then select
"Paste". All the table elements should be added to your design.
- Go back to the Vault fpt file, Click "Script" on the left hand menu bar. The script
Editor will now appear. Click on the first empty line, and while holding down your
Left Mouse Button, move the mouse downwards till the entire text within the script
IS highlighted.
- Click the Right Mouse Button, and select "Copy" from the drop down menu.
Return to the fpxEngine template, open up the script editor.
- Find in the script where the Hit Section Begins, put your mouse cursor on a
EMPTY line below, right click your mouse and select "Paste". The Vault script is
now in in your fpxEngine.
- You need to add any lights,plastics and bulbs to your LightList Manager in your
fpx table.

- In the fpxEngine Template, go to the top menu, select "Table" and then select
" LightList Manager". A small popup box will appear

- Look for the names listed on the left side in the LightList Manager to have

https://www.helpndoc.com/help-authoring-tool

"light", "bulb™ or "plastic" as fpx will use these words at the beginning of the
object name for all Vault Items.

- Select the light/bulbs/plastic file names, and then press the Include button.
Those items you selected will transfer over to the right hand side (you need to
scroll down, the lights will be at the bottom of that list.)

- Once you have selected all the lights and bulbs and transferred them over,
select "Okay", and then "Okay" again.

- Press Play!
- If you do not know how to transfer the lights, the Future Pinball manual explains
how to do this. Also, visit the fpxEngine YouTube for demonstrations

Full-featured multi-format Help

generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Create HTML Help, DOC, PDF and print manuals from 1 single
source

Using the Vault Worksheets

ii? Vault - Using the Vault items

o Where the Vault Worksheet Templates are

Vault worksheets (the master copy of the code | use to create Vault files) can be
found in the fpxEngine main folder as a subfolder called Vault Worksheets. These
worksheets filenames will be either in .txt or .vbs.

You will need a good text editor to modify these worksheets, as everything within
the sheets can be changed with a simple find and replace.

NEVER use the FP script editor to do any main modifications to a worksheet, the
find/replace command is very unreliable, and too simplistic to use. | recommend
Notepad++, a free version is available and gives you far more capabilities, like
color coding by script language and the find/replace is first rate.

You can get a copy_here at the Notepad++ website

€ Introduction

In developing the Vault system for the fpxEngine, a script template is used to create the
main code for each Vault item, and then modifications are made to that code
depending on what objects are used, and scoring features. As easy as using the Vault
system is for nearly everyone, coding on the other hand is very time consuming and can
take days of writing the code, testing and debugging the code, and even writing a
manual page for it. The template worksheets are just a way for me to create Vault items
in a fast manner while removing a lot of hours of work per Vault on my end.

Still, even though in time, you can have a unlimited amount of vault items, some people
who are a bit more comfortable with coding will want to customize or even create their
own vault files, so this page details the basic structure of the Vault worksheets, and how

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://notepad-plus-plus.org/downloads/

to change some settings, like adding more case settings, that go beyond what a typical
user with no coding experience can do. These worksheets are very expandable, and
extremely flexible, yet still retain their ease of use for even the most beginner of coder.

3

A NOTE about this section

Because there will be so many vault items down the road, all with different table
names and objects used, we are using fpxKickerl as our code example. fpx is the
"table name" and Kickerl is our "object name". With our main variables listing
though, this might cause confusion, so we instead use (table name)(object name) as
opposed to a existing vault item name. If you are duplicating or modifying a vault
worksheet, using the find and replace method above will also, and automatically,
change the main variables to your table and object name

© The Keywords

The worksheets were carefully written to make duplication of the worksheets as simple
to use and as fast to change as possible, by using set keywords within the variable,
subroutine, and object names.

This allows you to select a keyword, and with a simple find/replace, change it on mass
so your new vault item will not cause conflicts with other Vault items.

There are 3 keywords used within the worksheet template:

e Table vault name keyword - This is the main vault name, and is used for
vault items based on a actual table. For the basic vault example code we use
the name "fpx" as our "(table name)"

e Object vault name keyword - This is the main type of object we use. For the
basic vault example code we use the name "Kickerl1" as our "(object name)"

| usually add a number behind the object name, and change that number if |
want a second duplicate vault item without causing conflicts or errors. as a
example one vault "(object name)" is "Kickerl", the second duplicated vault
"(object name)" would be called "Kicker2".

e Remark keyword - This just replaces the remarks of the vault item. As a
example fpxVaultKickerl

0 Did You Know?

Not only are table names and object used as keywords within a vault item, but we
also use unique keywords in every vault as part of our subroutines and variable
names. This makes organizing our script structure very easy, and also, because
those names have the same keyword no matter what vault file script we are looking
at, it means we instantly know what that variable does and makes tracking, modifing
and debugging code a lot easier.

For example, for the variable that sets a starting case value, every main Vault file will
always have "CaseStart" in that variable name,. Subroutines are the same, they
always have a keyword as well. As a example, for the subroutines that control when a
game is started, the subroutine name will always have "GameReset" in that
subroutine name, and at the end of that subroutine name.

£ Changeable Variables
- Handles all the scoring using case statements.
- Uses a set keyword

v_(table name)(object name)Case

This is the main variable used to handle multiple scoring when a bank is made. In
the script, this is handled by the Subroutine : AddVaultobj ect t abl e() .

This increases by 1 every time a bank is being made, or a trigger is rolled over.

v_(table name)(object name)CaseStart

This is adjustable by both the developer and the person playing the game. This
sets v_(table name)(object name)Case to a starting value when a game is
started. This is a common "pinsetting" with the arcade games, and within the
majority of the fpx Vault items, determines whether to require the player to make a
extra case before a feature will be lit, or to "jump" ahead to a higher case setting
at the start of a new game.

In the case settings, if you wish to have the player go through a extra case within
the case settings, there is always a case 0, which usually just gives points, so
v_(table name)(object name)CaseStart would be set to 0. This would be a "hard"
or "conservative" setting with the arcade tables.v_(table name)(object name)
Case will start at this point at a new game.

If the player memory feature is switched off, (v_(table name)(object name)
Memory=0), every new ball in play will reset back to the value setin v_(table
name)(object name)CaseStart for every player

v_(table name)(object name)CaseEnd

Because the case routines are set up to handle 10 case settings internally, you will
need to define the case setting you want as the Ending case, and not continue on
to a higher case. For example, most drop targets have 4 main case settings,
usually scoring, a special feature, a extra ball and a special, plus a 5th case
setting to repeat afterwards. This variable allows you to define more case settings
(they have to be in numeric order) and then set the "end" point for the case
settings, so the case settings will never go beyond this maximum range. This way,
you have the option to expand or decrease the cases used for your modified vault
file as you see fit.

v_(table name)(object name)CaseRepeat

This is used to tell the script what to do once you have reached the maximum case
setting in v_(table name)(object name)CaseEnd. All you need to do is input a
value that is then used by v_(table name)(object name)Case

If you wish to start over the case settings back to the beginning, you can just input
the same case number you used for v_(table name)(object name)CaseStart .

If you want the case to repeat the case set to v_(table name)(object name)
CaseEnd, then just set this number to be the same as v_(table name)(object
name)CaseEnd.

You can also set this number to any case value you want. If you set this number to
a case setting beyond v_(table name)(object name)CaseEnd, the system will just
repeat that case number till the player loses his ball.

If you set this value lower than v_(table name)(object name)CaseEnd, the script
will start at that value and increase the cases till it gets back to v_(table name)
(object name)CaseEnd. This allows you to repeat the scoring routines over and
over till the player loses his ball in play.

o Expanding or reducing the amount of Lens Lights needed

- fpxEngine uses a unique scripting structure, that allows both the light lens and bulbs to
be included in a minutes amount of work, without causing errors in the script. We take
advantage of the SET command, and using control variables instead of hard coded
numbers, to expand (or contract) the amount of Light lens and playfield bulbs, that is
used automatically in the script.

NOTE: For these code examples, fpx is our "table name" and Kicker1l is our "object
name".

v_(table name)(object name)Lights(9,9)

- This is the main variable used to set lens lights within the script. We use TWO
variables here, the first number is the "group” number, and the second value is the
Object ID within that group. You can have a maximum of 9 "groups" with a
maximum of 9 objects per group. This way, the script can handle as much as 81
objects, but is mainly used to split a collection of light lens to 2 groups so we can
run different routines at the same time.

- The big advantage is using this method for For/Next loops, especially with
blinking effects, but this method also makes it easier for other coding tricks and
aspects.

- You will notice that everything is exactly the same way with the naming, this just
makes things easier for coding, as you can understand the code a lot better when
looking at one Vault item or another

- You need to define each light within a SET command using this variable, and
assign a specific value for each light object.

code: Setv_fpxKickerlLights(1,1)=LightKickerlfpx1l:Set
v_fpxKickerlLights(1,2)=LightKickerlfpx2
Set v_fpxKickerlLights(1,3)=LightKickerlfpx3:Set
v_fpxKickerlLights(1,4)=LightKickerlfpx4
The values assigned MUST be in numeric order, or it will cause errors or certain
lights "out of sequence” to not work. You will notice we use group 1, but we
increase the object ID for that group by one and then assign a light lens already
created in the editor to each ID
To expand this code, as a example adding a 5th lens light, you would just type this,
then add the object in the editor and make sure it is called LightKickerlfpx5 as it's
file name

code: Setv_fpxKickerlLights(1,5)=LightKickerlfpx5

v_(table name)(object name)LightCount

Once you have done adding lights, you need to also tell the script how many lights
you have, so the script will automatically handle the routines, especially for
FOR/NEXT routines.

code: v_fpxKickerlLightCount =4 ' Number of Lens Lights used (in set
code) in FOR NEXT loops

Since you just added a new light, this means you now have 5 lens lights, not 4 like
before, so you need to update the total

code: v_fpxKickerlLightCount =5 ' Number of Lens Lights used (in set
code) in FOR NEXT loops

And here is a sample code within the vault script that uses
v_fpxKickerlLightCount. This type of code is used every time in all Vault items, so
you no longer need to search and replace any numbers, just the one time in
v_fpxKickerlLightCount .

The coding was written in such a way, that you can have multiple lights, and after
you get that set up, just change the one number in v_fpxKickerlLightCount to
match the amount, and that's it. The engine will handle everything else. This code
example switches off all the lights in this group at once.

code: FORx=1To
(v_fpxKickerlLightCount):v_fpxKickerlLights
(1,x).State=BulbOff:NEXT " All lens lights off first

NOTE: we have just 4 lights already defined, so the new light lens object name
has a 5 at the end in it.

Adding the lights to BAM Lighting code

We do not get into details about BAM, as there is enough to do for me as it is, but BAM
does have the ability to make a major improvement to lighting. The simplest way is to
duplicate a existing line and changing the name of the duplicated object to the newly
created object name you set in the editor. Here's the original lines of the lighting BAM
code (4 light objects):

code: 'lightlens
LightKickerlfpx1EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx2EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx3EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx4EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)

and here's the code with the added new light (now with 5 light objects):

code: 'lightlens
LightKicker1fpx1EXT
.Brightness=(fpxLensBrightness):LightKicker1lfpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx LEXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKicker1fpx2EXT
.Brightness=(fpxLensBrightness):LightKicker1lfpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx2EXT

.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx3EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx4EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx5SEXT
.Brightness=(fpxLensBrightness):LightKicker1fpx5EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx5EXT
.GlowBrightness=(fpxLensGlowBrightness)
You will notice that "EXT" has to be included after the file name. This is a BAM thing. If
you do not include EXT after the object file name, or have a object name that is present
or actually in the editor, you will get a error message and your table will not work. With
fpx, you will notice that everything is named the same way, and done the same way,
including the lights, which is a increasing numeric number at the end.

o Expanding or reducing the amount of Bulbs/Plastics needed

v_(table name)(object name)Bulbs(9,9)

- This is the main variable used to set play field bulbs AND plastics within the
script. We use TWO variables here, the first number is the "group” number, and
the second value is the Object ID within that group. You can have a maximum of 9
"groups” with a maximum of 9 objects per group. This way, the script can handle
as much as 81 objects, but is mainly used to split a collection of bulbs/plastics to 2
groups so we can run different routines at the same time.

- This is done exactly the same way as the lights above. fpx always tries as much
as possible to have one way, and only one way to do things. This makes it far
easier to use, as you only need to learn that one way to understand the script.

- The big advantage is using this method for For/Next loops, especially with
blinking bulb/plastic effects, but this method also makes it easier for other coding
tricks and aspects. We combine the bulbs and plastics into one here as they work
in unison anyway.

- You will notice that everything is exactly the same way with the naming, this just
makes things easier for coding, as you can understand the code a lot better when
looking at one Vault item or another

- You need to define each bulb/plastic within a SET command using this variable,
and assign a specific value for each light.

code: Setv_fpxKickerlBulbs(1,1)=BulbKickerlfpx1:Set
v_fpxKicker1Bulbs(1,2)=BulbKickerlfpx2:Set
v_fpxKickerlBulbs(1,3)=PlasticKickerlfpxl ' Defines Bulb and
Plastics

The values assigned MUST be in numeric order, or it will cause errors or certain
lights "out of sequence" to not work. You will notice we use group 1, but we
increase the object ID for that group by one and then assign a bulb already
created in the editor to each ID

To expand this code, as a example adding a 4th playfield bulb, you would just type
this

code: v_fpxKicker1Bulbs(1,4)=BulbKickerlfpx3

NOTE: we have just 2 bulbs already defined, plus a plastic, so the new bulb
object name has a 3 at the end in it.

v_(table name)(object name)BulbCount

Once you have done adding bulbs and plastics, you need to also tell the script how
many you have, so the script will automatically handle the routines, especially for
FOR/NEXT routines.

code: v_fpxKicker1BulbCount =3 ' Number of bulbs used (in set code) in
FOR NEXT loops

Since you just added a new light, this means you now have 4 bulbs and plastics,
not 3 like before, so you need to update the total

code: v_fpxKickerlBulbCount =4 ' Number of bulbs used (in set code) in
FOR NEXT loops

and here is a sample code within the vault script. This type of code is used every
time in all Vault items, so you no longer need to search and replace anything. This
code switches off all the lights in this group at once.

code: FORx=1To
(v_fpxKickerlLightCount):v_fpxKickerlLights
(1,x).State=BulbOff::NEXT " All lens lights off first

Adding the Bulbs and Plastic lights to BAM Lighting code

We do not get into details about BAM, as there is enough to do for me as it is, but BAM
does have the ability to make a major improvement to lighting. The simplest way is to
duplicate a existing line and changing the name of the duplicated object to the newly
created object name you set in the editor. Here's the original lines of the Bulb BAM code
(2 bulb objects and 1 plastic object):

code: 'BAM bulb
BulbKickerlfpx1EXT
.Brightness=(fpxBulbBrightness):BulbKicker1fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)
BulbKickerlfpx2EXT
.Brightness=(fpxBulbBrightness):BulbKicker1fpx2EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)
PlasticKickerlfpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticKicker1lfpx1IEXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticKicker1fpx1IEXT
.GlowBrightness=(fpxPlasticGlowBrightness)

and here's the code with the added new light (now with 3 bulb objects and 1 plastic

object):

code: 'BAM bulb
BulbKickerlfpx1EXT
.Brightness=(fpxBulbBrightness):BulbKicker1fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)
BulbKickerlfpx2EXT
.Brightness=(fpxBulbBrightness):BulbKicker1fpx2EXT

.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)

PlasticKickerlfpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticKicker1fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticKickerlfpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

BulbKickerlfpx3EXT
.Brightness=(fpxBulbBrightness):BulbKicker1fpx3EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx3EXT
.GlowBrightness=(fpxBulbGlowBrightness)
You will notice that "EXT" has to be included after the file name. This is a BAM thing. If
you do not include EXT after the object file name, or have a object name that is present
or actually in the editor, you will get a error message and your table will not work. With
fpx, you will notice that everything is named the same way, and done the same way,
including the Bulbs, which is a increasing numeric number at the end.

v_(table name)(object name)CaseEnd

Because the case routines are set up to handle 10 case settings internally, you will
need to define the case setting you want as the Ending case, and not continue on
to a higher case. For example, most drop targets have 4 main case settings,
usually scoring, a special feature, a extra ball and a special, plus a 5th case
setting to repeat afterwards. This variable allows you to set the "end" point for the
case settings, so the case settings will never go beyond this maximum range. This
way, you have the option to expand or decrease the cases used for your modified
vault file as you see fit.

v_(table name)(object name)CaseRepeat

This is used to tell the script what to do once you have reached the maximum case
setting in v_fpxKickerlCaseEnd. All you need to do is input a value that is then
used by v_fpxKickerlCase

If you wish to start over the case settings back to the beginning, you can just input
the same case number you used for v_fpxKickerlCaseStart .

If you want the case to repeat the case set to v_fpxKickerlCaseEnd, then just set
this number to be the same as v_fpxKickerlCaseEnd.

You can also set this number to any case value you want. If you set this number to
a case setting beyond v_fpxKickerlCaseEnd, the system will just repeat that case
number till the player loses his ball.

If you set this value lower than v_fpxKickerlCaseEnd, the script will start at that
value and increase the cases till it gets back to v_fpxKickerlCaseEnd. This allows
you to repeat the scoring routines over and over till the player loses his ball in

play.

£ The Next Step: Adding more case scoring
Once you have changed the variable values above, you can now add additional cases to
your scoring. As a example, we will use the Kickerl example. This awards points for the
first 2 cases (case 0 (no light lens) and case 1 (first light lens)), 25000 points for case
2(2nd light lens), a Extra Ball for case 3 (3rd light lens) and finally a special for case 4 (4th
light lens). For this example, v_fpxKickerlCaseStart = 1 (starting case for a new game or
new ball in play) v_fpxKickerlCaseEnd=4 (the maximum amount of case) and

v_fpxKickerlCaseRepeat=4 (it will repeat case 4 and award a special every time)

If we wanted to change this, and instead to not have a special awarded more than once,
but to have it repeat 25000 points instead afterwards, we would need to add another
defined case setting, and create any new objects needed.

We need to first add the items and code changes and additions in the very top or where
the DIM and SET code is. You can find this code by searching for "Individual Vault
Routines" in the script for the fpxEngine.fpt file

That code would look like this:

code:

Const VaultKickerlfpxDebug=0 ' Dev Debug. Set to
1 to generate debug text for this vault item

Dim

v_fpxKickerlOn

,v_fpxKickerlMemory

,v_fpxKickerlLights

(

9

,9),v_fpxKicker1Bulbs(9,9),v_fpxKickerlLightCount,v_fpxKickerlBulbCount
' Variables

Dim

v_fpxKickerlCase

,v_fpxKickerlCaseEnd,v_fpxKickerlCaseStart,v_fpxKickerlCaseRepeat
' Scoring variables

Dim m_fpxKickerlpl,m_fpxKickerlp2,m_fpxKickerlp3,m_fpxKickerlp4
' Player(s) memory

If v_fpxKickerlOn=1 THEN ' Checks if vault item is
being used

Set v_fpxKickerlLights(1,1)=LightKickerlfpxl:Set v_fpxKickerlLights(1,2)
=LightKickerlfpx2 ' Defines Light Lens

Set v_fpxKickerlLights(1,3)=LightKickerlfpx3:Set v_fpxKickerlLights(1,4)
=LightKickerlfpx4

Set v_fpxKickerlBulbs(1,1)=BulbKickerlfpx1:Set v_fpxKickerlBulbs(1,2)
=BulbKickerlfpx2:Set v_fpxKickerlBulbs(1,3)=PlasticKickerlfpx1l
Defines Bulb and Plastics
' BAM bulb

BulbKickerlfpx1EXT
.Brightness=(fpxBulbBrightness):BulbKickerlfpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbKickerlfpx2EXT
.Brightness=(fpxBulbBrightness):BulbKickerlfpx2EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)

PlasticKickerlfpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticKicker1fpx1IEXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticKicker1fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

"light lens

LightKickerlfpx1EXT
.Brightness=(fpxLensBrightness):LightKickerlfpx1EXT

fpxEngine

.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx2EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx3EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKickerlfpx4EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1fpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)

v_fpxKickerlLightCount = 4 ' Number of Lens Lights
used (in set code) in FOR NEXT loops

v_fpxKickerlBulbCount = 3 " Number of bulbs used
(in set code) in FOR NEXT loops

v_fpxKickerlCaseEnd=4 ' Last case number for
scoring, used to reset case to beginning if over at next ball
v_fpxKickerlCaseRepeat=4 "If

v_fpxKickerlCase>v_fpxKickerlCaseStart. This forces either a repeat of
last case, or resets the case back to the beginning
End If
Since we only want to add one more case setting, we first change
v_fpxKickerlCaseRepeat from 4 to 5

code: v_fpxKickerlCaseRepeat=5

Then we need to create a new light lens object and maybe a extra playfield bulb. We

already did this as a example above, so lets show you that code again.

code: Setv_fpxKickerlLights(1,5)=LightKicker1fpx5
Set v_fpxKickerlBulbs(1,4)=BulbKickerlfpx3

and make sure we tell the script the proper amount of bulbs/plastics and light lens we are

using, also explained above as a example.

code: v _fpxKickerlLightCount =5 ' Number of Lens Lights used (in set code) in
FOR NEXT loops
v_fpxKickerlBulbCount = 4 ' Number of bulbs used (in set code) in FOR
NEXT loops

And finally, add the BAM lighting code:

code: LightKickerlfpx5EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx5EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1fpx5EXT
.GlowBrightness=(fpxLensGlowBrightness)
BulbKickerlfpx3EXT
.Brightness=(fpxBulbBrightness):BulbKicker1fpx3EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx3EXT
.GlowBrightness=(fpxBulbGlowBrightness)

So now, that code with the new changes will look like this:

code: Const VaultKicker1fpxDebug=0 ' Dev Debug. Set to
1 to generate debug text for this vault item

159/251

fpxEngine

Dim

v_fpxKickerlOn
,V_fpxKickerlMemory
,v_fpxKickerlLights

(

9

,9),v_fpxKicker1lBulbs(9,9),v_fpxKickerlLightCount,v_fpxKickerlBulbCount
' Variables

Dim

v_fpxKickerlCase

,v_fpxKickerlCaseEnd,v_fpxKickerlCaseStart,v_fpxKickerlCaseRepeat
" Scoring variables

Dim m_fpxKickerlpl,m_fpxKickerlp2,m_fpxKickerlp3,m_fpxKickerlp4
' Player(s) memory

If v_fpxKickerlOn=1 THEN ' Checks if vault item is
being used

Set v_fpxKickerlLights(1,1)=LightKickerlfpx1l:Set v_fpxKickerlLights(1,2)
=LightKickerlfpx2 ' Defines Light Lens

Set v_fpxKickerlLights(1,3)=LightKickerlfpx3:Set v_fpxKickerlLights(1,4)
=LightKickerlfpx4
Set v_fpxKickerlLights(1,5)=LightKickerlfpx5
THIS IS NEW ADDITION ***

Set v_fpxKickerlBulbs(1,1)=BulbKickerlfpx1:Set v_fpxKickerlBulbs(1,2)
=BulbKickerlfpx2:Set v_fpxKickerlBulbs(1,3)=PlasticKickerlfpx1l '
Defines Bulb and Plastics
Set v_fpxKickerlBulbs(1,4)=BulbKickerlfpx3
THIS IS NEW ADDITION ***

' BAM bulb

BulbKickerlfpx1EXT
.Brightness=(fpxBulbBrightness):BulbKickerlfpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbKickerlfpx2EXT
.Brightness=(fpxBulbBrightness):BulbKickerlfpx2EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)

PlasticKickerlfpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticKickerlfpx LEXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticKicker1fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

BulbKickerlfpx3EXT
.Brightness=(fpxBulbBrightness):BulbKickerlfpx3EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx3EXT
.GlowBrightness=(fpxBulbGlowBrightness) ' *** THIS IS NEW ADDITION
*kk
"light lens

LightKickerlfpx1EXT
.Brightness=(fpxLensBrightness):LightKickerlfpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)

160/251

fpxEngine

LightKicker1fpx2EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1fpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKicker1fpx3EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKicker1fpx4EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1fpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightKicker1fpx5EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx5EXT
.GlowRadius=(fpxLensGlowRadius):LightKicker1lfpx5EXT
.GlowBrightness=(fpxLensGlowBrightness) ' *** THIS IS NEW ADDITION

*k%

v_fpxKickerlLightCount =5 "% THIS HAS BEEN
CHANGED *** Number of Lens Lights used (in set code) in FOR NEXT
loops

v_fpxKickerlBulbCount = 4 ' *** THIS HAS BEEN
CHANGED **Number of bulbs used (in set code) in FOR NEXT loops
v_fpxKickerlCaseEnd=4 " Last case number for
scoring, used to reset case to beginning if over at next ball
v_fpxKickerlCaseRepeat=5 "*** THIS HAS BEEN

CHANGED ***If v_fpxKickerlCase>v_fpxKickerlCaseStart. This forces

either a repeat of last case, or resets the case back to the beginning

End If
Now, we need to add the new scoring code, this is done in the same subroutine that most
users would use to change the scoring, (Sub AddVault(object name)(table name)) but first
this is what the code would look like:

code: Sub AddVaultScoreKicker1fpx1()
'IF VaultDebug=1 THEN AddDebugText "AddVaultScoreKickerlfpx1() "
" Dev Debug Code
If v_fpxKickerlOn=1 THEN
Select Case v_fpxKickerlCase
Case 0
' This is used as the starting TargetBank score if
v_fpxKickerlCaseStart = 0.
AddScore(5000)
' Adds the value within the brackets to your player(s) score
AddJackpot(1000)
' Adds the value within the brackets to the Jackpot value which can
be collected later on in the game
AddBonus(1)
" Adds one bonus within the brackets to the End-Of-Ball Bonus
Countdown routine
Casel
' This is used as the starting TargetBank score if
v_fpxKickerlCaseStart = 1.
AddScore(10000)

161/251

fpxEngine

AddJackpot(10000)

AddBonus(1)

Case 2

AddScoringEvent "25kAward"

Case 3

AddScoringEvent "ExtraBall”

" Adds a Extra Ball
Case 4
AddScoringEvent "Special”
" Adds a credit (free game)

Case 5

' See the manual to add more cases for scoring
Case 6

' See the manual to add more cases for scoring
Case 7

' See the manual to add more cases for scoring
Case 8

' See the manual to add more cases for scoring
Case 9

' See the manual to add more cases for scoring
Case Else

' Case else will score if case is higher than 5, and will keep repeating
AddScoringEvent "25kAward"
End Select

End If
End Sub

Now, we just need to add the new scoring code to case 5 in this scoring subroutine.

code: Sub AddVaultScoreKickerlfpxi()
'IF VaultDebug=1 THEN AddDebugText "AddVaultScoreKickerlfpx1() "
' Dev Debug Code
If v_fpxKickerlOn=1 THEN
Select Case v_fpxKickerlCase
Case 0
' This is used as the starting TargetBank score if
v_fpxKickerlCaseStart = 0.
AddScore(5000)
' Adds the value within the brackets to your player(s) score
AddJackpot(1000)
' Adds the value within the brackets to the Jackpot value which can
be collected later on in the game
AddBonus(1)
' Adds one bonus within the brackets to the End-Of-Ball Bonus
Countdown routine
Casel
' This is used as the starting TargetBank score if
v_fpxKickerlCaseStart = 1.
AddScore(10000)
AddJackpot(10000)
AddBonus(1)
Case 2
AddScoringEvent "25kAward"

162 /251

fpxEngine

Case 3
AddScoringEvent "ExtraBall”
" Adds a Extra Ball
Case 4
AddScoringEvent "Special”
" Adds a credit (free game)

Case 5
AddScoringEvent "25kAward"

Case 6

' See the manual to add more cases for scoring
Case 7

' See the manual to add more cases for scoring
Case 8

' See the manual to add more cases for scoring
Case 9

' See the manual to add more cases for scoring
Case Else

' Case else will score if case is higher than 5, and will keep repeating
AddScoringEvent "25kAward"
End Select

End If
End Sub

fpxEngine will automatically handle the extra lights and objects we just added. Note that
v_fpxKickerlCaseEnd=4 is still the same, the script is set to start repeating after the final
case ending value is done. You can have up to 10 cases scoring, with any case values over
Case 9 repeating by having v_fpxKickerlCaseRepeat

set to "10" (v_fpxKickerlCaseRepeat = 10)

You can also use v_fpxKickerlCaseRepeat to "rollover" and go back to a earlier case
setting and start over the entire process. For example, after your special, you want to go
back to Case 1. You set v_fpxKickerlCaseRepeat to 1 (v_fpxKickerlCaseRepeat = 1)
and after the special, the case value will reset back to 1, and start over and repeat all the
following case scoring.

Create help files for the Qt Help Framework

Vault - Drop Targets
Free HTML Help documentation generator

vault_fpxDropTargetBank1l
Vault - Drop Targets - vault_fpxDropTargetBank1

@ Vault - Drop Targets - vault_fpxDropTargetBank1

o How to use this Vault Item in the fpxEngine

163/251

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com

Using this Vault item and including it in your table design is very simple. It's just a

couple copy and pastes from one fpt file to another!
Don't know How? Just click here.

vault_fpxDropTargetBank1

£ How it works

This Vault item has 5
stages of scoring,
plus the ability to set
player memory so a
player can carry on
through the stages
with his next ball. The
script is set to
automatically reset
the stages if the
player reaches the
5th stage (25000
pts) in his previous
ball so that player
can have the chance
to score a Extra Ball
and a free game a
second time.

Q User
adjustments
(pinsettings)
v_fpxDTB1CaseSt
art=1
Initial Stage (Light)
to be lit in this vault
item for start of each
ball,
- Set to O for no
lights at start or
"hard". (You need to
complete the Target
bank routine once
before the first light
will be lit)
- Set to 1 to have the
first light on at the
start of a game
v_fpxDTB1Memor
y=1
Handles the Memory
feature for

DropTarget Score by
each player

- Set to 1 if you want
the player(s)
DropTarget Bank
made total per game
in play carried over
to his next ball in
play.

- Set to O to have the
DropTarget Bank
Made total per game
in play reset back to
beginning with each
new ball.

€ How to Change
Scoring (Bank)

Sub
AddVaultScoreDT
B1fpx1()

This subroutine
handles scoring
when a bank is
made. you can
modify each stage
by modifying the
code with each case
setting by adding
different values
between the
brackets for higher
scores, or by adding
or replacing the
code for additional
or replacement
fpxEngine
AddScoringEvents
routines. In most
cases with
AddScoringEvent,
these are just 1 or 2
lines of code you
can copy and paste.
- Case 0: 5000
points,1000 added
to Jackpot value , 1
added to bonus
count at loss of a ball
- Case 1: 10000
points,10000 added

to Jackpot value , 1
added to bonus
count at loss of a ball
- Case 2: 25000
points

(AddScoringEvent
"25kAward")

- Case 3: Extra Ball

(AddScoringEvent
"ExtraBall")

- Case 4: Special
(AddScoringEvent
"Special")

- Case 5: 25000
points

(AddScoringEvent
"25kAward") This
will repeat till loss of
ball, then the case
settings will reset
back to the
beginning case at
the players next ball.

© How to Change scoring (Single)

Sub DTB1fpx1_Hit()

This subroutine handles scoring when a single target is made. you can modify this
just by changing the scoring code by adding different values between the brackets
for higher scores

AddScore(1000) ' Adds the value within the brackets to your player(s) score for
Single Target Hit (not entire bank)

AddJackpot(1000) ' Adds the value within the brackets to the Jackpot value
which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the End-Of-Ball
Bonus Countdown routine

There is a rubber object behind the targets, which also generates points
Sub DTB1fpxRubberl Hit()
AddScore(10)

© List of Objects
These objects are needed for the entire script to work. If you accidentally delete one of
these objects and then run the table, the table will throw up a error message telling you a
object is missing. If you restore that object back, your table will run fine.

This is a list of all the objects needed:

Lights
LightDTB1fpx1
LightDTB1fpx2
LightDTB1fpx3
LightDTB1fpx4

Bulbs

BulbDTB1fpx1
BulbDTB1fpx2
PlasticDTB1fpx1

Objects

The very nature of the fpxEngine is to allow absolute beginners to build and create complex

DTB1fpx1
DTB1fpxRubberl
TimerDTB1fpx1

t DTB1fpx1

© Additional Information

All Drop Targets objects are set to Layer 1 in your editor. Each major group of Vault
items are set to their own layer for easy moving and modification.

Layer 9 are reserved for the top (header) and Bottom (slingshots/flippers/aprons)
Layer O is reserved for the fpxEngine objects.

All objects can be modified or rotated to fit your design. Consult the FP manual for

making changes directly in the editor, or visit the_Pinball Nirvana website if you get
really stuck.

?

A Note

fpxEngine uses a shaped light as a "plastic”, as well as a semi-transparent surface
as a edge around it. This is set to a height of 32mm, to form a proper cover over
posts/rubbers etc that the ball can roll underneath. The Plastic light is part of the bulb
code, it will flash in unison with the bulbs underneath, and can not be deleted without
causing a error message when you run the table. Plastics always have the word in
front of them. Semi-transparent edges (surfaces) always has the "t_ in front of the
name.

© vault Worksheet

tables with as little actual experience as possible, but you still need to learn a tiny bit of

coding sometimes. Most of the Vault items will be based on the actual arcade table it came

from, so it's just a quick copy and paste the design elements, the code, and then adding
lights in the LightList manager.

More advanced coders though may wish to duplicate or modify this code to run different
routines. This Vault item worksheet is the master template | use to create vault items from,
so if you decide to duplicate or modify this vault item, you can change it easily using this
worksheet. For more information, check the Using the Vault Worksheets page.

c

0
d
e

"* Find and replace code keywords for duplication or new vault items
' replacement table vault name keyword: fpx

' replacement object keyword: DTB1

' Remark Keyword: DropTargetBankl

' Codeing Names Keywords

"v_ variables keyword

"m_ memory keyword

" * List of variables

https://pinballnirvana.com/forums/

fpxEngine

" VaultDTB1fpxDebug

'v_fpxDTB10On

'v_fpxDTB1CaseStart

'v_fpxDTB1CaseEnd

'v_fpxDTB1CaseRepeat

' v_fpxDTB1Memory

"v_fpxDTB1Case

'v_fpxDTB1Lights(9,9) ' For/Next Loops
'v_fpxDTB1Bulbs(9,9) ' For/Next Loops
'v_fpxDTB1LightCount ' Amount Lights in v_fpxDTB1Lights
"v_fpxDTB1BulbCount ' Amount Bulbs in v_fpxDTB1Bulbs
"m_fpxDTB1pl

"m_fpxDTB1p2

"'m_fpxDTB1p3

"m_fpxDTB1p4

' * Subroutines

" AddVaultDTB1fpx() " Main vault routine

' CloseVaultDTB1fpx() ' Light control

' DTB1fpxGameReset() "New game

' DTB1fpxBallReset() ' New ball in play

' DTB1fpxMemorySave() ' saves players progress

' DTB1fpxMemoryLoad() ' Restores players progress
" AddVaultScoreDTB1fpx

'fpxDTB1

" * Unique subroutines to this vault
' TimerTargetlfpx_Expired() ' Timer
" * Lights

" LightDTB1fpx1

' LightDTB1fpx2

' LightDTB1fpx3

' LightDTB1fpx4

'* Bulbs

' BulbDTB1fpx1

' BulbDTB1fpx2

' PlasticfpxDropTarget3Bank1l

'* Objects

' DTB1fpx1

' DTB1fpxRubberl

' TimerDTB1fpx1
"t_fpxDropTarget3Bankl

' * fpx Vault DropTargetBank1 *

' For the fpxEngine.

' 1. Make sure all layers in the FP editor are "visible".

' Copy all the table elements in the editor from this fpt and then paste these
elements into your fpxEngine table.

' 2. Set User adjustments below to suit, then copy this entire script from this fpt
and paste into the script for your fpx table.

168/251

fpxEngine

" I recommend pasting in the HIT SECTION.
" 3. Add Lights,plastics and bulbs to your LightList Manager in your fpx table.
' - Look for the names listed on the left side in the LightList Manager to have
"light", "bulb" or "plastic" as fpx will use these words
" at the beginning of the object name for all Vault Items
' - If you do not know how to transfere the lights, both the fpx manual (in the
vault pages) and the Future Pinball manual explains how to do this.
"4. Press "play"!
'* User adjustments *
"Initial light to be lit in this vault item for start of each ball, set to 0 for no lights at
start or "hard".
" (You need to complete the routine once before the first light will be lit)
' Set to 1 to have the first light on at the start of a game
v_fpxDTB1lCaseStart =1 ' Variable to hold DropTarget
Bank starting value
' Handles the Memory feature for DropTarget Score (common pin setting)
' Set to one if you want the player(s) DropTarget Bank made total per game in
play carried over to his next ball in play.
' Set to 0 to have the DropTarget Bank Made total per game in play reset back
to beginning with each new ball,
"as set by v_fpxDTB1CaseStart above.
v_fpxDTB1Memory=1 ' Variable to hold DropTarget Bank
Score Value from ball to Ball (for each player)
T k%% SCOI’Ing *k*
" Allows you to set the scoring. Everything else is done for you within the engine.
You can add/change anything you want in here
' like adding a multiplier or turning on Inlane lights etc. See Beginners Guide in
manual
Sub AddVaultScoreDTB1fpx1()
'IF VaultDebug=1 THEN AddDebugText "AddVaultScoreDTB1fpx1() "
' Dev Debug Code
If v_fpxDTB1On=1 THEN
Select Case v_fpxDTB1Case
Case 0 " This is used as the starting TargetBank score
if v_foxDTB1CaseStart = 0.
AddScore(5000) ' Adds the value within the brackets to
your player(s) score
AddJackpot(1000) ' Adds the value within the brackets to
the Jackpot value which can be collected later on in the game
AddBonus(1) ' Adds one bonus within the brackets to the
End-Of-Ball Bonus Countdown routine
Casel " This is used as the starting TargetBank score
if v_fpxDTB1CaseStart = 1.
AddScore(10000)
AddJackpot(10000)
AddBonus(1)
Case 2
AddScoringEvent "25kAward"
Case 3
AddScoringEvent "ExtraBall" " Adds a Extra Ball

169/251

fpxEngine

Case 4
AddScoringEvent "Special” " Adds a credit (free game)
Case Else ' Case else will score if case is higher than 5,

and will keep repeating

AddScoringEvent "25kAward"

End Select
End If
End Sub
" Drop Target Hit . You need to set a scoring value here for a single drop target
hit that doesn't complete a bank
Sub DTB1fpx1_Hit()
'IF VaultDebug=1 THEN AddDebugText "DTB1_Hit() " ' Play
the mechanical sound. this will sound even if game is tilted
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF

' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

AddScore(1000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(1000) " Adds the value within the brackets to
the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the

End-Of-Ball Bonus Countdown routine

If DTB1fpx1.Dropped = False Then AddMusicSet "drop" : Exit Sub : END IF
" Look to see if all targets in the bank is down, if not, play drop

sound,exit this subroutine

If v_fpxDTB1On=1 THEN AddVaultDTB1fpx() : END IF "if all

targets in this bank are down, go to bank made scoring subroutine

set LastSwitchHit = DTB1fpx1 ' FP code we can use if

needed. Just good programing

End Sub

" Rubber hit behind targets

Sub DTB1fpxRubberl Hit()

AddScore(10) " Adds the value within the brackets to
your player(s) score

AddMusicSet "sling" ' The music routine

End Sub

" Engine code, do not change or modify. This is needed by the engine to

reconize this vault item. Changing this will cause errors.
v_fpxDTB1On=1 " KEEP THIS SET TO 1.

" /[END fpx Vault DropTargetBankl

' Placed in main fpx Vault Routines ******

"*** fox Vault DropTargetBankl ***

Const VaultDTB1fpxDebug=1 ' Dev Debug. Setto 1 to
generate debug text for this vault item

Dim

v_fpxDTB1On

,v_fpxDTB1Memory

,v_fpxDTB1Lights
(9,9),v_fpxDTB1Bulbs(9,9),v_fpxDTB1LightCount,v_fpxDTB1BulbCount '

170/251

fpxEngine

Variables
Dim
v_fpxDTB1Case
v_fpxDTB1CaseEnd,v_fpxDTB1CaseStart,v_fpxDTB1CaseRepeat
' Scoring variables
Dimm_fpxDTB1lpl,m_fpxDTB1lp2,m_fpxDTB1lp3,m_fpxDTB1lp4
' Player(s) memory

If v_fpxDTB1On=1 THEN ' Checks if vault item is being
used

Set v_fpxDTB1Lights(1,1)=LightDTB1fpx1:Set v_fpxDTB1Lights(1,2)
=LightDTB1fpx2:Set v_fpxDTB1Lights(1,3)=LightDTB1fpx3:Set
v_fpxDTB1Lights(1,4)=LightDTB1fpx4
Setv_fpxDTB1Bulbs(1,1)=BulbDTB1fpx1:Set v_fpxDTB1Bulbs(1,2)
=BulbDTB1fpx2:Set v_fpxDTB1Bulbs(1,3)=PlasticDTB1fpx1 " Bulb and
Plastics

' BAM bulb

BulbDTB1fpx1EXT
.Brightness=(fpxBulbBrightness):BuloDTB1fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbDTB1fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbDTB1fpx2EXT
.Brightness=(fpxBulbBrightness):BuloDTB1fpx2EXT
.GlowRadius=(fpxBulbGlowRadius):BulbDTB1fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)

PlasticDTB1fpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticDTB1fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticDTB1fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

"light lens

LightDTB1fpx1EXT
.Brightness=(fpxLensBrightness):LightDTB1fpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB1fpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightDTB1fpx2EXT
.Brightness=(fpxLensBrightness):LightDTB1fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB1fpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightDTB1fpx3EXT
.Brightness=(fpxLensBrightness):LightDTB1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB1fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightDTBL1fpx4EXT
.Brightness=(fpxLensBrightness):LightDTB1fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB1fpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)

PlasticDTB1fpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticDTB1fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticDTB1fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

v_fpxDTB1LightCount = 4 " Number of Lens Lights used
(in set code) in FOR NEXT loops
v_fpxDTB1BulbCount = 3 " Number of bulbs used (in set

171/251

fpxEngine

code) in FOR NEXT loops
v_fpxDTB1CaseEnd=5

v_fpxDTB1CaseRepeat=5 ' Last case number for
scoring, used to reset case to beginning if over at next ball

End If

' Main scoring routine. On target bank, v_fpxDTB1Case scores then increases
by one

Sub AddVaultDTB1fpx()

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

If v_fpxDTB1On=1 THEN ' Check if vault item is
being used

IF VaultDTB1fpxDebug=1 THEN AddDebugText "AddVaultDTB1fpx()"

' Dev Debug Code

FORx=1To
(v_fpxDTB1LightCount):v_fpxDTB1Lights(1,x).State=BulbOff:NEXT
" All lens lights off first

LockDisplay=0 ' Clears any music priorty code

DisplayBlinkInterval=(FlashForMSBIlinkInterval+40) ' Sets new
interval for DT lights

FOR x =1 TO v_fpxDTB1BulbCount:v_fpxDTB1Bulbs(1,x).FlashForMs

(MusicintervalTime), (FlashForMSBlinkinterval), BulobOn:NEXT ' Bulbs
behind object will Blink rapidly for time set
AddMusicSet "dropbank” ' Note. Default music is

overwritten by any AddScoringEvent code, so you need this default in case
there is no special scoring feature
Select Case v_fpxDTB1Case

CaseO0: 'v_fpx CaseStart = 0. no light lens till next
case

Casel: "v_fpx CaseStart = 1. first light lens used

Case 2 :v_fpxDTB1Lights(1,2).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn " Second Light lens used

Case 3 : FlushDisplay() ' Have to add flushdisplay here

before extra ball/special/jackpot routines

Case 4 : FlushDisplay() : v_fpxDTB1Lights(1,2).FlashForMs
(MusicintervalTime), (DisplayBlinkinterval),BulbOn " Last light lens, so turn
back on LightLens 2 to keep repeating till loss of ball

Case 5 :v_fpxDTB1Lights(1,2).FlashForMs (MusiclntervalTime),

(DisplayBlinkinterval),BulbOn ' After last case, this just keeps
repeating for the ball in play till ball lost

End Select

AddVaultScoreDTB1fpx1() ' Goto scoring code
as set by developer. Must be before increase case code! (geez shiva)

v_fpxDTB1Case=v_fpxDTB1Case+l "Increases

value by 1 for select case routines
IF v_fpxDTB1Case> v_fpxDTB1CaseEnd THEN

v_fpxDTB1Case=(v_fpxDTB1CaseEnd) " Wraps back to caseStart if
over max CaseEnd

TimerDTB1fpx1.Set True, 1000 ' Resets targets (after set
delay time)

172/251

fpxEngine

DTB1fpxMemorySave() ' Save to that players
memory

CloseVaultDTB1fpx() " Run closing light routine

END IF
End Sub

' Timer to reset target bank after a delay.
Sub TimerDTB1fpx1_Expired()
TimerDTB1fpx1.Enabled = False
If v_fpxDTB1On=1 THEN ' Check if vault item is
being used
IF VaultDTB1fpxDebug=1 THEN AddDebugText "TimerDTB1fpx1_ Expired() "
' Dev Debug Code
DTB1fpx1.SolenoidPulse : PlaySound "DTargetReset" '
Resets drop target bank
END IF
End sub
" runs the correct light routine and restores proper light if v_fpxDTB1Memory=1
Sub CloseVaultDTB1fpx()
If v_fpxDTB1On=1 THEN ' Only if this feature is
set to "1" and nothing else
IF VaultDTB1fpxDebug=1 THEN AddDebugText "CloseVaultDTB1fpx()
":AddDebugText " ":END IF ' Dev Debug Code
FOR x=1To (v_fpxDTB1LightCount): v_fpxDTB1Lights(1,x).State =
BulbOff:NEXT
Select Case v_fpxDTB1Case ' Sets next light to
display based on Case
Case 0: Exit Sub
Case 1:v_fpxDTB1Lights(1,1).State = BulbOn:
v_fpxDTB1Lights(1,1).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' 1k, light 10k light for next case
Case 2: v_fpxDTB1Lights(1,2).State = BulbOn:
v_fpxDTB1Lights(1,2).FlashForMs (MusiclntervalTime/2),
(FlashForMSBIinkinterval),BulbOn ' 20k
Case 3: v_fpxDTB1Lights(1,3).State = BulbOn:
v_fpxDTB1Lights(1,3).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkiInterval),BulbOn ' Extra Ball
Case 4: v_fpxDTB1Lights(1,4).State = BulbOn:
v_fpxDTB1Lights(1,4).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' Special
Case 5:.v_fpxDTBL1Lights(1,2).State = BulbOn:
v_fpxDTB1Lights(1,2).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn " Any thing over
END SELECT
END IF
End Sub
' Game Start. This resets the variables. This is used by all Vault items and
called directly in the main engine code
Sub DTB1fpxGameReset()
IFv_fpxDTB1On=1 THEN ' Check if vault item is being
used

173/251

fpxEngine

IF VaultDTB1fpxDebug=1 THEN AddDebugText

"DTB1fpxGameReset()":AddDebugText " ":END IF ' Dev Debug Code

TimerDTB1fpx1.Set True, 20 ' Resets targets (after set
delay time)

FOR x =1 To (v_fpxDTB1LightCount): v_fpxDTB1Lights(1,x).State =
BulbOff:NEXT "We turn off all the lights first before we update the
scoring

FOR x=1TO v_fpxDTB1BulbCount:v_fpxDTB1Bulbs(1,x).State =
BulbOn:NEXT "We turn on all the Bulb lights first before we update
the scoring

v_fpxDTB1Case=(v_fpxDTB1CaseStart) ' Resets scoring

case setting back to starting default (set in vault user options)

m_fpxDTB1pl=(v_fpxDTB1CaseStart):m_fpxDTB1lp2=(v_fpxDTB1lCaseStart):
m_fpxDTB1p3=(v_fpxDTB1CaseStart):m_fpxDTB1lp4=(v_fpxDTB1lCaseStart)
Resets variables back to initial starting point

END IF
End Sub
" Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine code
Sub DTB1fpxBallReset()

IFv_fpxDTB1On=1 THEN ' Check if vault item is being
used

IF VaultDTB1fpxDebug=1 THEN AddDebugText "CloseVaultDTB1fpx()
":AddDebugText " ":END IF ' Dev Debug Code

TimerDTB1fpx1.Set True, 20 ' Resets targets (after set
delay time) Note we do this here before the memory check

If v_fpxDTB1Memory=1 Then " Look to see if
player memory feature is on if it is then...

DTB1fpxMemoryLoad() 'Load in last
v_fpxDTB1CaseStart made from loss of previous ball

ELSE " or if player memory feature is off

FOR x =1 To (v_fpxDTB1LightCount): v_fpxDTB1Lights(1,x).State =
BulbOff:NEXT " We turn off all the lights first before we update the
scoring

FOR x =1 TO v_fpxDTB1BulbCount:v_fpxDTB1Bulbs(1,x).State =
BulbOn:NEXT "We turn on all the Bulb lights first before we update
the scoring

IF v_fpxDTB1CaseStart > 1 THEN v_fpxDTB1CaseStart = 1
error catcher and prevents people from cheezing

v_fpxDTB1Case=(v_fpxDTB1lCaseStart) ' Reset
v_fpxDTB1Case back to the beginning(user selectable top of script)
CloseVaultDTB1fpx() " runs the correct light routine and

restores proper light if target bank player memory feature is setto 1
END IF
END IF
End Sub
' Saves the Case settings for each player at the loss of a ball (Selectable by
user). This is used by all Vault items and called directly in the main engine
code
Sub DTB1fpxMemorySave()
IFv_fpxDTB10On=1 THEN

1747251

fpxEngine

Select Case CurrentPlayer ' we see which player is
playing.

Case 1:m_fpxDTB1pl=v_fpxDTB1lCase

Case 22m_fpxDTB1p2=v_fpxDTB1Case

Case 3:m_fpxDTB1p3=v_fpxDTB1Case

Case 4:m_fpxDTB1lp4=v_fpxDTB1lCase

End Select

IF VaultDTB1fpxDebug=1 THEN ' Dev Debug Code

AddDebugText "DTB1fpxMemorySave()":AddDebugText " - foxDTB1Case = "
& (v_fpxDTB1Case):AddDebugText " - fopxDTB1Case = " & (v_fpxDTB1Case)

AddDebugText " - foxDTB1Case = " & (v_fpxDTB1Case):AddDebugText " -
fpxDTB1Case = " & (v_fpxDTB1Case)

END IF

END IF
End Sub
' Loads the "Case" settings for each player at the start of a ball, and restores
that value back on his next ball if Memory=L1.
' This is used by all Vault items and called directly in the main engine code
Sub DTB1fpxMemoryLoad()

IFv_foxDTB1On=1 THEN

FOR x =1 To (v_fpxDTB1LightCount): v_fpxDTB1Lights(1,x).State =
BulbOff:NEXT " We need to restore the light memory for each player,
so all lights off

FOR x=1TO v_fpxDTB1BulbCount:v_fpxDTB1Bulbs(1,x).State =
BulbOn:NEXT " PF bulb lights should be on, but lets make sure

Select Case CurrentPlayer " Now we look at the memory for
the player that is up to see which light should be turned back on

Case 1l:v_fpxDTB1Case=m_fpxDTB1pl

Case 2.v_fpxDTB1Case=m_fpxDTB1p2

Case 3:v_fpxDTB1Case=m_fpxDTB1p3

Case 4:v_fpxDTB1Case=m_fpxDTB1p4

End Select

IFv_fpxDTB1Case=>v_fpxDTB1CaseEnd THEN
v_fpxDTB1Case=v_fpxDTB1CaseStart "Wraps back to caseStart if
over max CaseEnd

Select Case v_fpxDTB1Case ' Restore the proper light the
extra snazzy way

Case 0

Case 1:v_fpxDTB1Lights(1,1).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn

Case 2:v_fpxDTB1Lights(1,2).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

Case 3:v_fpxDTB1Lights(1,3).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn

Case 4:v_fpxDTB1Lights(1,4).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

Case 5:v_fpxDTB1Lights(1,2).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn

End Select

IF VaultDTB1fpxDebug=1 THEN ' Dev Debug Code

AddDebugText " - m_fpxDTB1pl = " & (m_fpxDTB1lpl):AddDebugText " -
m_fpxDTB1p2 = " & (m_fpxDTB1p2)

175/251

fpxEngine

AddDebugText " - m_fpxDTB1p3 = " & (m_fpxDTB1p3):AddDebugText " -
m_fpxDTB1p4 = " & (m_fpxDTB1p4)
END IF
END IF
End Sub
" /[END fpx Vault DropTargetBank1l

U kkkkkkkkhkkkhkhkkhkhkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkx

T %% *%
Vault
T kkkkkkhkhhkhkhhhhkhhhhkhhhhkhhhkkhhkkhhhkhhhhhhhhhhhhhhhhhikhhhirhhhihhkiikrkiikx

' *** These subroutines are Master subroutines and are used by all Vault items
*k%

' These are for use by the fpxEngine. Any other templates these subroutines
must be linked to within that templates code

"Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine
code.

' ResetTiltedState(): ResetForNewPlayerBall()

Sub VaultBallReset()

IF v_fpxDTB10On=1 THEN DTB1fpxBallReset()

End Sub

' This resets the variables for the start of a game. This is used by all Vault items
and called directly in the main engine code

' ResetForNewGame() : EndOfGame()

Sub VaultGameReset()

IF v_fpxDTB10On=1 THEN DTB1fpxGameReset():END IF

End Sub

' Closes ScoringEvent code pointed to by background timer for additional
instructions.

' TimerCloseScoringEventCase is the control variable

Sub TimerCloseScoringEvent_Expired()

End Sub

' Saves the v_fpxAVCase settings for each player at the loss of a ball

(Selectable by user).
Sub VaultAVMemorySave()
IFv_fpxDTB1On=1 THEN DTB1fpxMemorySave()

End Sub
Sub VaultAVMemoryLoad()
IFv_fpxDTB1On=1 THEN DTB1fpxMemoryLoad():END IF

end sub

Full-featured multi-format Help
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Generate EPub eBooks with ease

176/251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/create-epub-ebooks

fpxEngine

vault_fpxDropTargetBank2

Vault - Drop Targets - vault_fpxDropTargetBank2
< i w

o How to use this Vault Item in the fpxEngine

Using this Vault item and including it in your table design is very simple. It's just a
couple copy and pastes from one fpt file to another!
Don't know How? Just click here.

vault_fpxDropTargetBank?2

£ How it works

This Vault item has 5
stages of scoring,
plus the ability to set
player memory so a
player can carry on
through the stages
with his next ball. The
script is set to
automatically reset
the stages if the
player reaches the
5th stage (25000
pts) in his previous
ball so that player
can have the chance
to score a Extra Ball
and a free game a
second time.

O User
adjustments
(pinsettings)
v_fpxDTB2CaseSt
art=1
Initial Stage (Light)
to be lit in this vault
item for start of each
ball,
- Set to 0 for no

1771251

lights at start or
"hard". (You need to
complete the Target
bank routine once
before the first light
will be lit)

- Set to 1 to have the
first light on at the
start of a game
v_fpxDTB2Memor
y=1

Handles the Memory
feature for
DropTarget Score by
each player

- Set to 1 if you want
the player(s)
DropTarget Bank
made total per game
in play carried over
to his next ball in
play.

- Set to O to have the
DropTarget Bank
Made total per game
in play reset back to
beginning with each
new ball.

£ How to Change
Scoring (Bank)

Sub
AddVaultScoreDT
B2fpx1()

This subroutine
handles scoring
when a bank is
made. you can
modify each stage
by modifying the
code with each case
setting by adding
different values
between the
brackets for higher
scores, or by adding
or replacing the
code for additional
or replacement
fpxEngine
AddScoringEvents

routines. In most
cases with
AddScoringEvent,
these are just 1 or 2
lines of code you
can copy and paste.
- Case 0: 5000
points,1000 added
to Jackpot value , 1
added to bonus
count at loss of a ball
- Case 1: 10000
points,10000 added
to Jackpot value , 1
added to bonus
count at loss of a ball
- Case 2: 25000
points

(AddScoringEvent
"25kAward")

- Case 3: Extra Ball
(AddScoringEvent
"ExtraBall")

- Case 4: Special
((AddScoringEvent
"Special")

- Case 5: 25000
points

(AddScoringEvent
"25kAward") This
will repeat till loss of
ball, then the case
settings will reset
back to the
beginning case at
the players next ball.

€ How to Change scoring (Single)

Sub DTB2fpx1_Hit()

This subroutine handles scoring when a single target is made. you can modify this
just by changing the scoring code by adding different values between the brackets
for higher scores

AddScore(1000) ' Adds the value within the brackets to your player(s) score for
Single Target Hit (not entire bank)

AddJackpot(1000) ' Adds the value within the brackets to the Jackpot value
which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the End-Of-Ball
Bonus Countdown routine

There is a rubber object behind the targets, which also generates points
Sub DTB2fpxRubberl_Hit()
AddScore(10)

© List of Objects
These objects are needed for the entire script to work. If you accidentally delete one of
these objects and then run the table, the table will throw up a error message telling you a
object is missing. If you restore that object back, your table will run fine.

This is a list of all the objects needed:

Lights
LightDTB2fpx1
LightDTB2fpx2
LightDTB2fpx3
LightDTB2fpx4

Bulbs
BulbDTB2fpx1
BulbDTB2fpx2
PlasticDTB2fpx1

Objects
DTB2fpx1
DTB2fpxRubberl
TimerDTB2fpx1
t DTB2fpx1

© Additional Information

e All Drop Targets objects are set to Layer 1 in your editor. Each major group of Vault
items are set to their own layer for easy moving and modification.

e Layer 9 are reserved for the top (header) and Bottom (slingshots/flippers/aprons)
Layer O is reserved for the fpxEngine objects.
All objects can be modified or rotated to fit your design. Consult the FP manual for

making changes directly in the editor, or visit the_Pinball Nirvana website if you get
really stuck.

3

A Note

fpxEngine uses a shaped light as a "plastic”, as well as a semi-transparent surface
as a edge around it. This is set to a height of 32mm, to form a proper cover over
posts/rubbers etc that the ball can roll underneath. The Plastic light is part of the bulb
code, it will flash in unison with the bulbs underneath, and can not be deleted without
causing a error message when you run the table. Plastics always have the word in
front of them. Semi-transparent edges (surfaces) always has the "t_ in front of the
name.

© vault Worksheet

The very nature of the fpxEngine is to allow absolute beginners to build and create complex
tables with as little actual experience as possible, but you still need to learn a tiny bit of
coding sometimes. Most of the Vault items will be based on the actual arcade table it came
from, so it's just a quick copy and paste the design elements, the code, and then adding
lights in the LightList manager.

https://pinballnirvana.com/forums/

fpxEngine

More advanced coders though may wish to duplicate or modify this code to run different
routines. This Vault item worksheet is the master template | use to create vault items from,
so if you decide to duplicate or modify this vault item, you can change it easily using this
worksheet. For more information, check the Using the Vault Worksheets page.

co '* Find and replace code keywords for duplication or new vault items
de 'replacement table vault name keyword: fpx

' replacement object keyword: DTB2

' Remark Keyword: DropTargetBank2

' Codeing Names Keywords

'v_ variables keyword

"m_ memory keyword

" * List of variables

" VaultDTB2fpxDebug

"v_fpxDTB20n

'v_fpxDTB2CaseStart

"v_fpxDTB2CaseEnd

'v_fpxDTB2CaseRepeat

' v_fpxDTB2Memory

"v_fpxDTB2Case

"v_fpxDTB2Lights(9,9) ' For/Next Loops

'v_fpxDTB2Bulbs(9,9) ' For/Next Loops

'v_fpxDTB2LightCount " Amount Lights in v_fpxDTB2Lights

"v_fpxDTB2BulbCount ' Amount Bulbs in v_fpxDTB2Bulbs

"m_fpxDTB2pl

"'m_fpxDTB2p2

"m_fpxDTB2p3

"m_fpxDTB2p4

' * Subroutines

" AddVaultDTB2fpx() ' Main vault routine

' CloseVaultDTB2fpx() ' Light control

' DTB2fpxGameReset() "New game

' DTB2fpxBallReset() ' New ball in play

' DTB2fpxMemorySave() ' saves players progress

' DTB2fpxMemoryLoad() ' Restores players progress

" AddVaultScoreDTB2fpx

' fpxDTB2

"* Unique subroutines to this vault
' TimerTargetlfpx_Expired() ' Timer
"* Lights

' LightDTB2fpx1

' LightDTB2fpx2

' LightDTB2fpx3

' LightDTB2fpx4

' * Bulbs

' BulbDTB2fpx1

' BulbDTB2fpx2

'* Objects

' DTB2fpx1

181/251

fpxEngine

' DTB2fpxRubberl
' TimerDTB2fpx1

"* fpx Vault DropTargetBank2 *

' For the fpxEngine.
' 1. Make sure all layers in the FP editor are "visible".
' Copy all the table elements in the editor from this fpt and then paste these
elements into your fpxEngine table.
' 2. Set User adjustments below to suit, then copy this entire script from this fpt
and paste into the script for your fpx table.
" I recommend pasting in the HIT SECTION.
' 3. Add Lights,plastics and bulbs to your LightList Manager in your fpx table.
' - Look for the names listed on the left side in the LightList Manager to have
"light", "bulb" or "plastic" as fpx will use these words
" at the beginning of the object name for all Vault Items
' - If you do not know how to transfere the lights, both the fpx manual (in the
vault pages) and the Future Pinball manual explains how to do this.
"4. Press "play"!
"* User adjustments *
" Initial light to be lit in this vault item for start of each ball, set to O for no lights at
start or "hard".
' (You need to complete the routine once before the first light will be lit)
' Set to 1 to have the first light on at the start of a game

v_fpxDTB2CaseStart = 1 ' Variable to hold DropTarget
Bank starting value
' Handles the Memory feature for DropTarget Score (common pin setting)
' Set to one if you want the player(s) DropTarget Bank made total per game in
play carried over to his next ball in play.
' Set to 0 to have the DropTarget Bank Made total per game in play reset back
to beginning with each new ball,
"as set by v_fpxDTB2CaseStart above.

v_fpxDTB2Memory=1 " Variable to hold DropTarget Bank
Score Value from ball to Ball (for each player)
T k%% SCOI’Ing *k*k
" Allows you to set the scoring. Everything else is done for you within the engine.
You can add/change anything you want in here
' like adding a multiplier or turning on Inlane lights etc. See Beginners Guide in
manual
Sub AddVaultScoreDTB2fpx1()

'IF VaultDebug=1 THEN AddDebugText "AddVaultScoreDTB2fpx1() "

" Dev Debug Code
If v_fpxDTB20n=1 THEN
Select Case v_fpxDTB2Case

CaseO ' This is used as the starting TargetBank score
if v_fpxDTB2CaseStart = 0.

AddScore(5000) ' Adds the value within the brackets to
your player(s) score

AddJackpot(1000) " Adds the value within the brackets to

182/251

fpxEngine

the Jackpot value which can be collected later on in the game

AddBonus(1) ' Adds one bonus within the brackets to the
End-Of-Ball Bonus Countdown routine

Casel ' This is used as the starting TargetBank score
if v_fpxDTB2CaseStart = 1.

AddScore(10000)

AddJackpot(10000)

AddBonus(1)

Case 2

AddScoringEvent "25kAward"

Case 3

AddScoringEvent "ExtraBall" ' Adds a Extra Ball

Case 4

AddScoringEvent "Special” " Adds a credit (free game)

Case Else ' Case else will score if case is higher than 5,
and will keep repeating

AddScoringEvent "25kAward"

End Select
End If
End Sub
' Drop Target Hit . You need to set a scoring value here for a single drop target
hit that doesn't complete a bank
Sub DTB2fpx1_Hit()
'IF VaultDebug=1 THEN AddDebugText "DTB2_Hit() " 'Play
the mechanical sound. this will sound even if game is tilted
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF

' See if in tilt state or no game in progress to exit the subroutine and stop
any scoring
AddScore(1000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)
AddJackpot(1000) " Adds the value within the brackets to
the Jackpot value which can be collected later on in the game
AddBonus(1) " Adds one bonus within the brackets to the
End-Of-Ball Bonus Countdown routine
If DTB2fpx1.Dropped = False Then AddMusicSet "drop" : Exit Sub : END IF
" Look to see if all targets in the bank is down, if not, play drop

sound,exit this subroutine
If v_fpxDTB20n=1 THEN AddVaultDTB2fpx() : END IF “if all
targets in this bank are down, go to bank made scoring subroutine
set LastSwitchHit = DTB2fpx1 ' FP code we can use if
needed. Just good programing
End Sub
" Rubber hit behind targets
Sub DTB2fpxRubberl Hit()

AddScore(10) " Adds the value within the brackets to
your player(s) score

AddMusicSet "sling" " The music routine

End Sub

" Engine code, do not change or modify. This is needed by the engine to
reconize this vault item. Changing this will cause errors.
v_fpxDTB20n=1 " KEEP THIS SET TO 1.

183/251

fpxEngine

' JEND fpx Vault DropTargetBank2
' Placed in main fpx Vault Routines ******

Const VaultDTB2fpxDebug=1 ' Dev Debug. Setto 1 to
generate debug text for this vault item

Dim
v_fpxDTB20n

,v_fpxDTB2Memory

,v_fpxDTB2Lights
(9,9),v_fpxDTB2Bulbs(9,9),v_fpxDTB2LightCount,v_fpxDTB2BulbCount
Variables

Dim

v_fpxDTB2Case
v_fpxDTB2CaseEnd,v_fpxDTB2CaseStart,v_fpxDTB2CaseRepeat

' Scoring variables
Dim m_fpxDTB2pl,m_fpxDTB2p2,m_fpxDTB2p3,m_fpxDTB2p4
' Player(s) memory

If v_fpxDTB20n=1 THEN ' Checks if vault item is being
used

Set v_fpxDTB2Lights(1,1)=LightDTB2fpx1:Set v_fpxDTB2Lights(1,2)
=LightDTB2fpx2:Set v_fpxDTB2Lights(1,3)=LightDTB2fpx3:Set
v_fpxDTB2Lights(1,4)=LightDTB2fpx4
Setv_fpxDTB2Bulbs(1,1)=BulbDTB2fpx1:Set v_fpxDTB2Bulbs(1,2)
=BulbDTB2fpx2:Set v_fpxDTB2Bulbs(1,3)=PlasticDTB2fpx1

' BAM bulb

BulbDTB2fpx1EXT
.Brightness=(fpxBulbBrightness):BulbDTB2fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbDTB2fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbDTB2fpx2EXT
.Brightness=(fpxBulbBrightness):BulbDTB2fpx2EXT
.GlowRadius=(fpxBulbGlowRadius):BulbDTB2fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)

PlasticDTB2fpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticDTB2fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticDTB2fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

"light lens

LightDTB2fpx1EXT
.Brightness=(fpxLensBrightness):LightDTB2fpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB2fpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightDTB2fpx2EXT
.Brightness=(fpxLensBrightness):LightDTB2fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB2fpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightDTB2fpx3EXT
.Brightness=(fpxLensBrightness):LightDTB2fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB2fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)

184 /251

fpxEngine

LightDTB2fpx4EXT
.Brightness=(fpxLensBrightness):LightDTB2fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightDTB2fpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)

v_fpxDTB2LightCount = 4 " Number of Lens Lights used
(in set code) in FOR NEXT loops
v_fpxDTB2BulbCount = 3 " Number of bulbs used (in set

code) in FOR NEXT loops
v_fpxDTB2CaseEnd=5

v_fpxDTB2CaseRepeat=5 ' Last case number for
scoring, used to reset case to beginning if over at next ball

End If

' Main scoring routine. On target bank, v_fpxDTB2Case scores then increases
by one

Sub AddVaultDTB2fpx()

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

If v_fpxDTB20On=1 THEN ' Check if vault item is
being used

IF VaultDTB2fpxDebug=1 THEN AddDebugText "AddVaultDTB2fpx()"

' Dev Debug Code

FORx=1To
(v_fpxDTB2LightCount):v_fpxDTB2Lights(1,x).State=BulbOff:NEXT
" All lens lights off first

LockDisplay=0 ' Clears any music priorty code

DisplayBlinkInterval=(FlashForMSBIlinkInterval+40) ' Sets new
interval for DT lights

FOR x =1 TO v_fpxDTB2BulbCount:v_fpxDTB2Bulbs(1,x).FlashForMs

(MusicintervalTime), (FlashForMSBlinkinterval), BulbOn:NEXT ' Bulbs
behind object will Blink rapidly for time set
AddMusicSet "dropbank” ' Note. Default music is

overwritten by any AddScoringEvent code, so you need this default in case
there is no special scoring feature
Select Case v_fpxDTB2Case

Case0: 'v_fpx CaseStart = 0. no light lens till next
case

Casel: "v_fpx CaseStart = 1. first light lens used

Case 2 : v_fpxDTB2Lights(1,2).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn " Second Light lens used

Case 3 : FlushDisplay() ' Have to add flushdisplay here

before extra ball/special/jackpot routines

Case 4 : FlushDisplay() : v_fpxDTB2Lights(1,2).FlashForMs
(MusicintervalTime), (DisplayBlinkinterval),BulbOn " Last light lens, so turn
back on LightLens 2 to keep repeating till loss of ball

Case 5 :v_fpxDTB2Lights(1,2).FlashForMs (MusiclntervalTime),

(DisplayBlinkinterval),BulbOn ' After last case, this just keeps
repeating for the ball in play till ball lost

End Select

AddVaultScoreDTB2fpx1() ' Goto scoring code

as set by developer. Must be before increase case code! (geez shiva)

185/251

fpxEngine

v_fpxDTB2Case =v_fpxDTB2Caset+1 "Increases
value by 1 for select case routines

IF v_fpxDTB2Case> v_fpxDTB2CaseEnd THEN
v_fpxDTB2Case=(v_fpxDTB2CaseEnd) ' Wraps back to caseStart if
over max CaseEnd

TimerDTB2fpx1.Set True, 1000 ' Resets targets (after set
delay time)

DTB2fpxMemorySave() ' Save to that players
memory

CloseVaultDTB2fpx() " Run closing light routine

END IF
End Sub
" Timer to reset target bank after a delay.
Sub TimerDTB2fpx1_Expired()
TimerDTB2fpx1.Enabled = False
If v_fpxDTB20n=1 THEN " Check if vault item is
being used
IF VaultDTB2fpxDebug=1 THEN AddDebugText "TimerDTB2fpx1_Expired() "
' Dev Debug Code
DTB2fpx1.SolenoidPulse : PlaySound "DTargetReset" '
Resets drop target bank
END IF
End sub
' runs the correct light routine and restores proper light if v_fpxDTB2Memory=1
Sub CloseVaultDTB2fpx()
If v_fpxDTB20On=1 THEN ' Only if this feature is
set to "1" and nothing else
IF VaultDTB2fpxDebug=1 THEN AddDebugText "CloseVaultDTB2fpx()
":AddDebugText " ":END IF ' Dev Debug Code
FOR x =1 To (v_fpxDTB2LightCount): v_fpxDTB2Lights(1,x).State =
BulbOff:NEXT
Select Case v_fpxDTB2Case " Sets next light to
display based on Case
Case 0: Exit Sub
Case 1:v_fpxDTB2Lights(1,1).State = BulbOn:
v_fpxDTB2Lights(1,1).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' 1k, light 10k light for next case
Case 2: v_fpxDTB2Lights(1,2).State = BulbOn:
v_fpxDTB2Lights(1,2).FlashForMs (MusicintervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' 20k
Case 3: v_fpxDTB2Lights(1,3).State = BulbOn:
v_fpxDTB2Lights(1,3).FlashForMs (MusicintervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' Extra Ball
Case 4: v_fpxDTB2Lights(1,4).State = BulbOn:
v_fpxDTB2Lights(1,4).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' Special
Case 5:v_fpxDTB2Lights(1,2).State = BulbOn:
v_fpxDTB2Lights(1,2).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' Any thing over
END SELECT

186/251

fpxEngine

END IF
End Sub
' Game Start. This resets the variables. This is used by all Vault items and
called directly in the main engine code
Sub DTB2fpxGameReset()

IF v_fpxDTB20On=1 THEN ' Check if vault item is being
used

IF VaultDTB2fpxDebug=1 THEN AddDebugText
"DTB2fpxGameReset()":AddDebugText " ":END IF ' Dev Debug Code

TimerDTB2fpx1.Set True, 20 ' Resets targets (after set
delay time)

FOR x =1 To (v_fpxDTB2LightCount): v_fpxDTB2Lights(1,x).State =
BulbOff:NEXT " We turn off all the lights first before we update the
scoring

FOR x =1 TO v_fpxDTB2BulbCount:v_fpxDTB2Bulbs(1,x).State =
BulbOn:NEXT "We turn on all the Bulb lights first before we update
the scoring

v_fpxDTB2Case=(v_fpxDTB2CaseStart) ' Resets scoring

case setting back to starting default (set in vault user options)

m_fpxDTB2pl=(v_fpxDTB2CaseStart):m_fpxDTB2p2=(v_fpxDTB2CaseStart):
m_fpxDTB2p3=(v_fpxDTB2CaseStart):m_fpxDTB2p4=(v_fpxDTB2CaseStart)
Resets variables back to initial starting point

END IF
End Sub
"Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine code
Sub DTB2fpxBallReset()

IF v_fpxDTB20n=1 THEN ' Check if vault item is being
used

IF VaultDTB2fpxDebug=1 THEN AddDebugText "CloseVaultDTB2fpx()
":AddDebugText " ":END IF ' Dev Debug Code

TimerDTB2fpx1.Set True, 20 ' Resets targets (after set
delay time) Note we do this here before the memory check

If v_fpxDTB2Memory=1 Then ' Look to see if
player memory feature is on if it is then...

DTB2fpxMemoryLoad() 'Load in last
v_fpxDTB2CaseStart made from loss of previous ball

ELSE " or if player memory feature is off

FOR x =1 To (v_fpxDTB2LightCount): v_fpxDTB2Lights(1,x).State =
BulbOff:NEXT " We turn off all the lights first before we update the
scoring

FOR x =1 TO v_fpxDTB2BulbCount:v_fpxDTB2Bulbs(1,x).State =
BulbOn:NEXT " We turn on all the Bulb lights first before we update
the scoring

IFv_fpxDTB2CaseStart > 1 THEN v_fpxDTB2CaseStart = 1 '
error catcher and prevents people from cheezing

v_fpxDTB2Case=(v_fpxDTB2CaseStart) ' Reset
v_fpxDTB2Case back to the beginning(user selectable top of script)
CloseVaultDTB2fpx() " runs the correct light routine and

restores proper light if target bank player memory feature is set to 1
END IF

187/251

fpxEngine

END IF
End Sub
' Saves the Case settings for each player at the loss of a ball (Selectable by
user). This is used by all Vault items and called directly in the main engine
code
Sub DTB2fpxMemorySave()

IF v_fpxDTB20n=1 THEN

Select Case CurrentPlayer " we see which player is
playing.

Case 1:m_fpxDTB2pl=v_fpxDTB2Case

Case 2:m_fpxDTB2p2=v_fpxDTB2Case

Case 3:m_fpxDTB2p3=v_fpxDTB2Case

Case 4:m_fpxDTB2p4=v_fpxDTB2Case

End Select

IF VaultDTB2fpxDebug=1 THEN ' Dev Debug Code

AddDebugText "DTB2fpxMemorySave()":AddDebugText " - fpxDTB2Case = "
& (v_fpxDTB2Case):AddDebugText " - fpxDTB2Case = " & (v_fpxDTB2Case)

AddDebugText " - foxDTB2Case = " & (v_fpxDTB2Case):AddDebugText " -
fpxDTB2Case = " & (v_fpxDTB2Case)

END IF

END IF
End Sub
' Loads the "Case" settings for each player at the start of a ball, and restores
that value back on his next ball if Memory=1.
' This is used by all Vault items and called directly in the main engine code
Sub DTB2fpxMemoryLoad()

IFv_fpxDTB20n=1 THEN

FOR x =1 To (v_fpxDTB2LightCount): v_fpxDTB2Lights(1,x).State =
BulbOff:NEXT ' We need to restore the light memory for each player,
so all lights off

FOR x =1 TO v_fpxDTB2BulbCount:v_fpxDTB2Bulbs(1,x).State =
BulbOn:NEXT " PF bulb lights should be on, but lets make sure

Select Case CurrentPlayer " Now we look at the memory for
the player that is up to see which light should be turned back on

Case l:v_fpxDTB2Case=m_fpxDTB2pl

Case 2:.v_fpxDTB2Case=m_fpxDTB2p2

Case 3:v_fpxDTB2Case=m_fpxDTB2p3

Case 4:v_fpxDTB2Case=m_fpxDTB2p4

End Select

IFv_fpxDTB2Case=>v_fpxDTB2CaseEnd THEN
v_fpxDTB2Case=v_fpxDTB2CaseStart " Wraps back to caseStart if
over max CaseEnd

Select Case v_fpxDTB2Case ' Restore the proper light the
extra snazzy way

Case 0

Case 1:v_fpxDTB2Lights(1,1).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn

Case 2:v_fpxDTB2Lights(1,2).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

Case 3:v_fpxDTB2Lights(1,3).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn

Case 4:v_fpxDTB2Lights(1,4).FlashForMs (MusicintervalTime),

188/251

fpxEngine

(DisplayBlinkinterval),BulbOn
Case 5:v_fpxDTB2Lights(1,2).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn
End Select
IF VaultDTB2fpxDebug=1 THEN ' Dev Debug Code
AddDebugText " - m_fpxDTB2pl = " & (m_fpxDTB2pl):AddDebugText " -
m_fpxDTB2p2 = " & (m_fpxDTB2p2)
AddDebugText " - m_fpxDTB2p3 = " & (m_fpxDTB2p3):AddDebugText " -
m_fpxDTB2p4 = " & (m_fpxDTB2p4)
END IF
END IF
End Sub
" [END fpx Vault DropTargetBank?2

U kkkkkkkkhkkhkhkkkkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkx

fo Vault *x

R R R T e R R e e R e R R R e R R T e R R e R R T R R RS R R R e R R T R R e R R T e

' *** These subroutines are Master subroutines and are used by all Vault items
*%k%

' These are for use by the fpxEngine. Any other templates these subroutines
must be linked to within that templates code

" Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine
code.

' ResetTiltedState(): ResetForNewPlayerBall()

Sub VaultBallReset()

IF v_fpxDTB20n=1 THEN DTB2fpxBallReset|()

End Sub

' This resets the variables for the start of a game. This is used by all Vault items
and called directly in the main engine code

' ResetForNewGame() : EndOfGame()

Sub VaultGameReset()

IF v_fpxDTB20n=1 THEN DTB2fpxGameReset():END IF

End Sub

' Closes ScoringEvent code pointed to by background timer for additional
instructions.

" TimerCloseScoringEventCase is the control variable

Sub TimerCloseScoringEvent_Expired()

End Sub

' Saves the v_fpxAVCase settings for each player at the loss of a ball
(Selectable by user).

Sub VaultAVMemorySave()

IFv_fpxDTB20n=1 THEN DTB2fpxMemorySave()

End Sub
Sub VaultAVMemoryLoad()
IFv_fpxDTB20On=1 THEN DTB2fpxMemoryLoad():END IF

end sub

189/251

fpxEngine

Full-featured multi-format Help
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Free HTML Help documentation generator

Vault - Stand Up Targets

Create iPhone web-based documentation

vault_fpxTarget3Bank1
Vault - Stand Up Targets - vault_fpxTarget3Bank1l

@ Vault - Stand Up Targets - vault_fpxTarget3Bankl1

0 How to use this Vault Item in the fpxEngine

Using this Vault item and including it in your table design is very simple. It's just a
couple copy and pastes from one fpt file to another!
Don't know How? Just click here.

vault_fpxTarget3Bank1

190/251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com
https://www.helpndoc.com/feature-tour/iphone-website-generation

fpxEngine

£ How it works

This Vault item
has 2 stages of
scoring, plus the
ability to set player
memory so a
player can carry
on through the
stages with his
next ball. This
Vault item also
has 2 different
light displays, a
flashing light lens
routine for the
target lights
(Williams style) or
a off state that
turns on with a
target hit.(Bally

style)

O User

adjustments

(pinsettings)
v_fpxTarget3Ba
nklMemory=1
- Handles the
Memory feature
for Target Score
(common pin
setting)
- Set to one if you
want the player(s)
Target Bank made
total per game in
play carried over
to his next ball in
play.
- Setto 0 to have
the Target Bank
Made total per
game in play reset
back to beginning
with each new
ball,
v_fpxTarget3Ba
nklCaseStart =
1
- Initial light to be
lit in this vault item

191/251

for start of each
ball

- Set to 0 for no
lights at start or
"hard". (You need
to complete the
routine once
before the first
light will be lit)

- Set to 1 to have
the first light on at
the start of a
game

Q How to
Change Scoring
(Bank)

Sub
AddVaultScoreT
arget3Bank1fpx(
)

This subroutine
handles scoring
when a bank is
made. you can
modify each stage
by modifying the
code with each
case setting by
adding different
values between
the brackets for
higher scores, or
by adding or
replacing the
code for
additional or
replacement
fpxEngine
AddScoringEvent
s routines. In most
cases with
AddScoringEvent,
these are just 1 or
2 lines of code
you can copy and
paste.

- Case 0: 5000
points,1000
added to Jackpot
value , 1 added to

bonus count at
loss of a ball

- Case 1: 10000
points,10000
added to Jackpot
value , 1 added to
bonus count at
loss of a ball

- Case 2: Awards
Jackpot Value

(AddScoringEven
t "Jackpot")

- Case Else: This
is a error catcher,
you should just
leave this alone.

€ How to Change scoring (Single)

Sub AddVaultScoreTarget3Bank1fpx()

This subroutine handles scoring when a bank is made. you can modify each stage
by modifying the code with each case setting by adding different values between
the brackets for higher scores, or by adding or replacing the code for additional or
replacement fpxEngine AddScoringEvents routines. In most cases with
AddScoringEvent, these are just 1 or 2 lines of code you can copy and paste.

- Case 1: 5000 points, 5000 added to Jackpot, and 1 bonus added to the Bonus
Countdown when the player loses his ball.

- Case 2: 10000 points, 10000 added to Jackpot, and 1 bonus added to the
Bonus Countdown when the player loses his ball. The player is also awarded a
Jackpot value.

Sub Target3Bank1fpx1 Hit(),Sub Target3Bankl1fpx2_ Hit(),Sub
Target3Bank1fpx3_Hit()

This subroutine handles scoring when a single target is made. you can modify this
just by changing the scoring code by adding different values between the brackets
for higher scores

This is for when the target is not made, or is not "lit".
AddScore(1000) ' Adds the value within the brackets to your player(s) score for
Single Target Hit (not entire bank)

AddJackpot(1000) " Adds the value within the brackets to the Jackpot
value which can be collected later on in the game
AddBonus(1) " Adds one bonus within the brackets to the End-Of-Ball

Bonus Countdown routine

When a target is already made or "lit", the scoring will be different
AddScore(5000) ' Adds the value within the brackets to your player(s) score for
Single Target Hit (not entire bank)

AddJackpot(5000) " Adds the value within the brackets to the Jackpot
value which can be collected later on in the game
AddBonus(1) " Adds one bonus within the brackets to the End-Of-Ball

Bonus Countdown routine

© List of Objects
These objects are needed for the entire script to work. If you accidentally delete one of

these objects and then run the table, the table will throw up a error message telling you
a object is missing. If you restore that object back, your table will run fine.

This is a list of all the objects needed:

Lights

LightTarget3Bank1fpx1

LightTarget3Bank1fpx2

LightTarget3Bank1fpx3

LightTarget3Bank1fpx4
Bulbs

BulbTarget3Bankl1fpx1l
PlasticTarget3Bank1fpx1

Objects

Target3Bank1fpx1l
Target3Bank1fpx2
Target3Bank1fpx3
TimerTarget3Bank1fpx
t Target3Banklfpxl
© Additional Information

e All Stand Up Targets objects are set to Layer 2 in your editor. Each major group of Vault
items are set to their own layer for easy moving and modification.
Layer 9 are reserved for the top (header) and Bottom (slingshots/flippers/aprons)
Layer O is reserved for the fpxEngine objects.
All objects can be modified or rotated to fit your design. Consult the FP manual for
making changes directly in the editor, or visit the_Pinball Nirvana website if you get
really stuck.

)

A Note

fpxEngine uses a shaped light as a "plastic”, as well as a semi-transparent surface
as a edge around it. This is set to a height of 32mm, to form a proper cover over
posts/rubbers etc that the ball can roll underneath. The Plastic light is part of the bulb
code, it will flash in unison with the bulbs underneath, and can not be deleted without
causing a error message when you run the table. Plastics always have the word in
front of the file name. Semi-transparent edges (surfaces) always has the "t _in front
of the name.

© vault Worksheet

The very nature of the fpxEngine is to allow absolute beginners to build and create
complex tables with as little actual experience as possible, but you still need to learn a
tiny bit of coding sometimes. Most of the Vault items will be based on the actual arcade
table it came from, so it's just a quick copy and paste the design elements, the code,
and then adding lights in the LightList manager.

More advanced coders though may wish to duplicate or modify this code to run different
routines. This Vault item worksheet is the master template | use to create vault items
from, so if you decide to duplicate or modify this vault item, you can change it easily

https://pinballnirvana.com/forums/

fpxEngine

using this worksheet. For more information, check the Using the Vault Worksheets
page.

co ' * Find and replace code keywords for duplication or new vault items

de 'replacement table vault name keyword: fpx
' replacement object keyword: Target3Bankl
' Remark Keyword: Target3Bank1l
' Coding Names Keywords
'v_ variables keyword
"m_ memory keyword
"VaultTarget3Bank1fpxDebug ' Debug
'v_fpxTarget3Bank1On " Turns on or off this vault item. (Prevents errors if no
objects on the table)
'v_fpxTarget3BanklCaseStart ' Initial starting case(position) for Bank made
'v_fpxTarget3BanklMemory ' Handles memory for each player
'v_fpxTarget3Bankl1lCase ' Bank scoring control case
'v_fpxTarget3BanklUseWilliamsLights ' Flashing chaser lights (wms) or no
flashing (bally) lights
'v_fpxTarget3Bankl1Blinkintervals ' Interval of flashing lights
'v_fpxTarget3BanklCaseEnd ' Last case (position) for each bank made
'v_fpxTarget3BanklCaseRepeat
'v_fpxTarget3Bankl1Lights(9,9) 'Use in FOR/NEXT loops. 9 groups with 9
objects in each group max.
'v_fpxTarget3Bank1Bulbs(9,9) ' Use in FOR/NEXT loops. 9 groups with 9
objects in each group max.
'v_fpxTarget3BanklLightCount ' Total amount of lights used
'v_fpxTarget3Bank1BulbCount ' Total amount of bulbs used
"m_fpxTarget3Banklpl ' Variable for Player 1 memory
'm_fpxTarget3Bank1p2 " Variable for Player 2 memory
"m_fpxTarget3Banklp3 ' Variable for Player 3 memory
'm_fpxTarget3Bank1p4 ' Variable for Player 4 memory
' * Subroutines
" AddVaultScoreTarget3Bankl1fpx() 'Main Bank Scoring (user adjustable)
' Target3Banklfpx1l_ Hit() ' Hit routine for object (user adjustable)
' Target3Bank1fpx2_Hit() ' Hit routine for object (user adjustable)
' Target3Bank1fpx3_Hit() ' Hit routine for object (user adjustable)
" AddVaultTarget3Banklfpx() ' Main bank scoring routine (Vault Engine)
' CloseVaultTarget3Banklfpx() 'Used in player memory to restore the proper
lights
' Target3Bank1fpxLightControl() ' Main lighting routine
' Target3BanklfpxGameReset() ' Start game routine
' Target3BanklfpxBallReset() ' New ball routine
' Target3BanklfpxMemoryLoad() ' Load player memory
' Target3BanklfpxMemorySave() ' Saves player memory
" * Unique subroutines to this vault
' TimerTarget3Bank1fpx_Expired() ' Timer to reset after set delay.
'* Lights
" LightTarget3Bank1fpx1l
" LightTarget3Bank1fpx2
' LightTarget3Bank1fpx3
' LightTarget3Bank1fpx4

195/251

fpxEngine

' * Bulbs

' BulbTarget3Bank1fpx1

' PlasticTarget3Bank1fpx1
' * Objects

' Target3Bank1fpx1

' Target3Bank1fpx2

' Target3Bank1fpx3

' TimerTarget3Bank1fpx

t Target3Bankl1fpx1l

' * fpx Vault Target3Bank1 *

' For the fpxEngine.

' 1. Make sure all layers in the FP editor are "visible".

' Copy all the table elements in the editor from this fpt and then paste these

elements into your fpxEngine table.

' 2. Set User adjustments below to suit, then copy this entire script from this fpt

and paste into the script for your fpx table.

" I recommend pasting in the HIT SECTION.

' 3. Add Lights,plastics and bulbs to your LightList Manager in your fpx table.

' - Look for the names listed on the left side in the LightList Manager to have

"light", "bulb" or "plastic" as fpx will use these words

" at the beginning of the object name for all Vault Items

' - If you do not know how to transfere the lights, both the fpx manual (in the

vault pages) and the Future Pinball manual explains how to do this.

"4. Press "play"!

'* User adjustments *

"Initial light to be lit in this vault item for start of each ball, set to 0 for no lights at

start or "hard".

' (You need to complete the routine once before the first light will be lit)

' Set to 1 to have the first light on at the start of a game
v_fpxTarget3BanklCaseStart = 1 ' Variable to hold

DropTarget Bank starting value

' Handles the Memory feature for Target Score (common pin setting)

' Set to one if you want the player(s) Target Bank made total per game in play

carried over to his next ball in play.

' Set to 0 to have the Target Bank Made total per game in play reset back to

beginning with each new ball,

'as set by v_fpxTarget3Bankl1CaseStart above.
v_fpxTarget3Bank1Memory=1 " Variable to hold Target

Bank Score Value from ball to Ball (for each player)

' Each of the main companies in the 1980's producing pinball tables had a

unique style to their games. Williams with their targets had the "chaser" lights

"in front of their targets blinking rapidly that turned solid (or "on") when a ball

struck a target (like in Firepower), while Bally had their lights turned completely

" Off and then turned on the lights with a target hit. This pinsetting simulates

both styles, by default this is set to Williams style
v_fpxTarget3BanklUseWilliamsLights=1 ' 0=Bally(no light on

before hit) 1=Williams (light is blinking before hit)

' kkk Sconng *k%k

196/251

fpxEngine

" Allows you to set the scoring. Everything else is done for you within the engine.
You can add/change anything you want in here
' like adding a multiplier or turning on Inlane lights etc. See Beginners Guide in
manual
Sub AddVaultScoreTarget3Bank1fpx()
If v_fpxTarget3Bank10On=1 THEN

Select Case v_fpxTarget3BanklCase

Case 0 ' This is used as the starting TargetBank score
if v_fpxTarget3Bank1CaseStart = 0.

AddScore(5000) ' Adds the value within the brackets to
your player(s) score

AddJackpot(1000) ' Adds the value within the brackets
to the Jackpot value which can be collected later on in the game

AddBonus(1) ' Adds one bonus within the brackets to
the End-Of-Ball Bonus Countdown routine

Casel ' This is used as the starting TargetBank score
if v_fpxTarget3Bank1CaseStart = 1.

AddScore(10000)

AddJackpot(10000)

AddBonus(1)

Case 2

AddScoringEvent "Jackpot” ' Collects the Jackpot value

Case Else ' Case else will score if case is higher than

5, and will keep repeating

v_fpxTarget3BanklCase=1 : AddVaultScoreTarget3Bank1fpx()
Error catcher, this loops back to case 1

End Select
End If
End Sub
' Target Hit . You need to set a scoring value here for a single target hit that
doesn't complete a bank
Sub Target3Bank1fpx1_Hit()
If v_fpxTarget3Bank1On=1 THEN

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF

' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

IF LightTarget3Bank1fpx1.State=BulbOff OR
LightTarget3Bank1fpx1.State=BulbBlink Then " Note we check for light
state for both Bally and wms styles

LightTarget3Bank1fpx1.State=BulbOn "Need to turn on the
light first so AddVaultTarget3Bank1fpx() will work if all 3 lights are set to BulbOn

AddScore(1000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(1000) ' Adds the value within the brackets to

the Jackpot value which can be collected later on in the game
AddMusicSet "drop”

Else " If the target light is already lit

AddScore(5000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(5000) ' Adds the value within the brackets to

197/251

fpxEngine

the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the
End-Of-Ball Bonus Countdown routine

AddMusicSet "drop”

END IF

v_fpxTarget3Bankl1Lights(1,1).FlashForMs (MusicIntervalTime),
(v_fpxTarget3Bank1Blinkintervals/4),BulbOn " Fancy blinking when hit
then bulb is lit

AddVaultTarget3Bank1fpx() " Routine to check if Bank is
made.

set LastSwitchHit = Target3Bank1fpx1 " FP code we can use
if needed. Just good programing

END IF
End Sub

Sub Target3Bank1fpx2_Hit()
If v_fpxTarget3Bank1On=1 THEN
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF
' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

IF LightTarget3Bank1fpx2.State=BulbOff OR
LightTarget3Bank1fpx2.State=BulbBlink Then " Note we check for light
state for both Bally and wms styles

LightTarget3Bank1fpx2.State=BulbOn "Need to turn on the
light first so AddVaultTarget3Bank1fpx() will work if all 3 lights are set to BulbOn

AddScore(1000) ' Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(1000) ' Adds the value within the brackets to

the Jackpot value which can be collected later on in the game
AddMusicSet "drop”

Else " If the target light is already lit

AddScore(5000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(5000) ' Adds the value within the brackets to
the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the

End-Of-Ball Bonus Countdown routine
AddMusicSet "drop”

END IF

v_fpxTarget3Bankl1Lights(1,2).FlashForMs (MusicIntervalTime),
(v_fpxTarget3Bank1Blinkintervals/4),BulbOn " Fancy blinking when hit
then bulb is lit

AddVaultTarget3Bank1fpx() ' Routine to check if Bank is
made.

set LastSwitchHit = Target3Bank1fpx2 ' FP code we can use
if needed. Just good programing

END IF
End Sub

Sub Target3Bank1fpx3_Hit()
If v_fpxTarget3Bank1On=1 THEN
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF
' See if in tilt state or no game in progress to exit the subroutine and stop

198/251

fpxEngine

any scoring

IF LightTarget3Bank1fpx3.State=BulbOff OR
LightTarget3Bank1fpx3.State=BulbBlink Then ' Note we check for light
state for both Bally and wms styles

LightTarget3Bank1fpx3.State=BulbOn " Need to turn on the
light first so AddVaultTarget3Bank1fpx() will work if all 3 lights are set to BulbOn

AddScore(1000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(1000) " Adds the value within the brackets to

the Jackpot value which can be collected later on in the game
AddMusicSet "drop”

Else "If the target light is already lit

AddScore(5000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(5000) ' Adds the value within the brackets to
the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the

End-Of-Ball Bonus Countdown routine
AddMusicSet "drop”

END IF

v_fpxTarget3Bankl1Lights(1,3).FlashForMs (MusiclntervalTime),
(v_fpxTarget3Bank1Blinkintervals/4),BulbOn ' Fancy blinking when hit
then bulb is lit

AddVaultTarget3Bank1fpx() ' Routine to check if Bank is
made.

set LastSwitchHit = Target3Bank1fpx3 ' FP code we can use
if needed. Just good programing

END IF
End Sub

" Engine code, do not change or modify. This is needed by the engine to
reconize this vault item. Changing this will cause errors.
v_fpxTarget3Bank10n=1 'KEEP THIS SET TO 1.

Const VaultTarget3Bank1fpxDebug=0

Dim

v_fpxTarget3Bank1On

,v_fpxTarget3Bank1CaseStart

v_fpxTarget3Bank1lMemory
v_fpxTarget3Bank1Case,v_fpxTarget3Bank1lUseWilliamsLights ' Variables
Dim

v_fpxTarget3Bank1Blinkintervals
,v_fpxTarget3BanklCaseEnd,v_fpxTarget3BanklCaseRepeat
Dim

v_fpxTarget3Bank1Lights

(
9

199/251

fpxEngine

9),v_fpxTarget3Bank1Bulbs
(9,9),v_fpxTarget3Bank1LightCount,v_fpxTarget3Bank1BulbCount
Variables used in For/Next loops
Dim
m_fpxTarget3Banklpl
,m_fpxTarget3Bank1p2,m_fpxTarget3Banklp3,m_fpxTarget3Banklp4
" Variables for Player(s) memory
If v_fpxTarget3Bank1On=1 THEN ' Checks if vault item is
being used
Set v_fpxTarget3Bankl1Lights(1,1)=LightTarget3Bank1fpx1l:Set
v_fpxTarget3Bank1Lights(1,2)=LightTarget3Bankl1fpx2:Set
v_fpxTarget3Bank1Lights(1,3)=LightTarget3Bank1fpx3 ' Define lights used in
FOR/NEXT loops
Set v_fpxTarget3Bankl1Lights(1,4)=LightTarget3Bank1fpx4
Set v_fpxTarget3Bank1Bulbs(1,1)=BulbTarget3Bank1fpx1
Set v_fpxTarget3Bank1Bulbs(1,2)=PlasticTarget3Bank1fpx1l '
Define Bulbs used in FOR/NEXT loops
v_fpxTarget3BanklLightCount = 4:v_fpxTarget3Bank1BulbCount = 2

' Number of lights and number of bulbs used in FOR NEXT loops
v_fpxTarget3BanklCaseEnd =2
v_fpxTarget3BanklCaseRepeat=1 " Amount of scoring
cases before wraps to CaseStart
' BAM bulb
BulbTarget3Bank1fpx1EXT
.Brightness=(fpxBulbBrightness):BulbTarget3Bank1fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbTarget3Bank1fpx LEXT
.GlowBrightness=(fpxBulbGlowBrightness)
PlasticTarget3Bank1fpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticTarget3Bank1fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticTarget3Bank1fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)
"light lens
LightTarget3Bank1fpx1EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank1fpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank1fpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightTarget3Bank1fpx2EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank1fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank1fpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightTarget3Bank1fpx3EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank1fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightTarget3Bank1fpx4EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank1fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank1fpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)
End If
' Main scoring routine. On target bank, v_fpxTarget3BanklCase increases by
one, then runs that number in the matching case

200/251

fpxEngine

Sub AddVaultTarget3Bank1fpx()

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF

' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

If v_fpxTarget3Bank1On=1 THEN ' Check if vault
item is being used

IF VaultTarget3Bank1fpxDebug=1 THEN AddDebugText
"AddVaultTarget3Bank1fpx()" ' Dev Debug Code

If LightTarget3Bank1fpx1.State=BulbOn AND
LightTarget3Bank1fpx2.State=BulbOn AND
LightTarget3Bank1fpx3.State=BulbOn THEN

FORx=1To
(v_fpxTarget3BanklLightCount):v_fpxTarget3Bank1Lights
(1,x).State=BulbOff::NEXT " All lens lights off first
LockDisplay=0 ' Clears any music priorty code
FORx=1TO

v_fpxTarget3Bank1BulbCount:v_fpxTarget3Bank1Bulbs(1,x).FlashForMs
(MusicintervalTime), (DisplayBlinkinterval), BulbOn:NEXT ' Bulbs behind object
will Blink rapidly for time set

' Note. Default music is overwritten by any AddScoringEvent code, so you
need this default in case there is no special scoring feature

AddMusicSet "dropbank"

Target3Bank1fpxLightControl() ' Reset lights

Select Case v_fpxTarget3BanklCase

Case0: 'v_fpx CaseStart = 0. no light lens till next
case

Case 1: v_fpxTarget3Bank1Lights(1,4).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn ' First bank made, Turn on Jackpot light

Case2: ' Second Bank made

Case Else : v_fpxTarget3Bank1lCase=(v_fpxTarget3BanklCaseStart)
" error catcher

End Select

AddVaultScoreTarget3Bank1fpx() " Goto scoring
code as set by user. Must be before increase case code! (geez shiva)

v_fpxTarget3BanklCase = v_fpxTarget3BanklCase+1
Increases value by 1 for select case routines

IF v_fpxTarget3Bank1lCase> v_fpxTarget3Bank1CaseEnd THEN
v_fpxTarget3BanklCase=(v_fpxTarget3BanklCaseStart) " Wraps back to
CaseStart if over max CaseEnd

Target3BanklfpxMemorySave() ' Save Case Value
to that players memory

END IF
END IF
End Sub
" Timer to reset target bank after a delay.
Sub TimerTarget3Bank1fpx_Expired()
TimerTarget3Bankl1fpx.Enabled = False
If v_fpxTarget3Bank1On=1 THEN

IF VaultTarget3BanklfpxDebug=1 THEN AddDebugText
"TimerTarget3Bank1fpx_Expired()" ' Dev Debug Code

FOR x =1 To (v_fpxTarget3Bank1LightCount):

201/251

fpxEngine

v_fpxTarget3Bank1Lights(1,x).State = BulbOff:NEXT "We need to
restore the light memory for each player, so all lights off

IF v_fpxTarget3Bank1Case=2 THEN
v_fpxTarget3Bank1Lights(1,4).State=BulbOn " Jackpot Light blinks
rapidly for time set

Target3Bank1fpxLightControl() ' Restore the target lights to
start again

END IF
End sub
' runs the correct light routine and restores proper light if
v_fpxTarget3BanklMemory=1
Sub CloseVaultTarget3Bank1fpx()

If v_fpxTarget3Bank1On=1 THEN " Only if this
feature is set to "1" and nothing else

IF VaultTarget3Bank1fpxDebug=1 THEN AddDebugText
"CloseVaultTarget3Bank1fpx()" ' Dev Debug Code
Target3Bankl1fpxLightControl() ' Restore the target lights to
start again

Select Case v_fpxTarget3BanklCase ' Sets next
light to display based on Case

Case 0O:

Case 1:

Case 2: v_fpxTarget3Bank1Lights(1,4).State = BulbOn "Turn on
Jackpot Light

Case Else : v_fpxTarget3Bank1Case=1 " error catcher

END SELECT

END IF
End Sub
' Main bank scoring routine
Sub Target3Bank1fpxLightControl()

If v_fpxTarget3Bank1On=1 THEN

IF VaultTarget3BanklfpxDebug=1 THEN AddDebugText

"Target3Bank1fpxLightControl()" ' Dev Debug Code
" Only if this feature is set to "1" and nothing else
v_fpxTarget3Bank1Blinkintervals=150 ' Blink Intervals

LightTarget3Bank1fpx1.Blinkinterval =
(v_fpxTarget3Bank1Blinkintervals):LightTarget3Bank1fpx2.Blinkinterval =
(v_fpxTarget3Bank1Blinkintervals)

LightTarget3Bank1fpx3.Blinkinterval =
(v_fpxTarget3Bankl1Blinkintervals):LightTarget3Bank1fpx4.Blinkinterval =
(v_fpxTarget3Bank1Blinkintervals)

LightTarget3Bank1fpx1.BlinkPattern =
"100":LightTarget3Bank1fpx2.BlinkPattern =
"010":LightTarget3Bank1fpx3.BlinkPattern =
"001":LightTarget3Bank1fpx4.BlinkPattern = "010" ' Blink Pattern

IF v_fpxTarget3BanklUseWilliamsLights THEN

FOR x =1 To (v_fpxTarget3Bankl1LightCount-1):
v_fpxTarget3Bankl1Lights(1,x).State = BulbBlink:NEXT "(WMS) all lights
Blink

ELSE

FOR x =1 To (v_fpxTarget3Bankl1LightCount-1):

202/251

fpxEngine

v_fpxTarget3Bank1Lights(1,x).State = BulbOff:NEXT ' (Bally) Turns off
lights
END IF
END IF
End Sub
' Start Game Routine
Sub Target3BanklfpxGameReset()

IF v_fpxTarget3Bank1On=1 THEN ' Check if vault item is
being used

IF VaultTarget3Bank1fpxDebug=1 THEN AddDebugText
"Target3BanklfpxGameReset()" ' Dev Debug Code

FOR x =1 To (v_fpxTarget3Bankl1LightCount):
v_fpxTarget3Bank1Lights(1,x).State = BulbOff:NEXT " We turn off all the

Bulb lights first before we update the scoring
v_fpxTarget3BanklCase=(v_fpxTarget3BanklCaseStart)

Resets scoring case setting back to starting default (set in vault user options)
m_fpxTarget3Banklpl=(v_fpxTarget3BanklCaseStart):m_fpxTarget3Banklp2=

(v_fpxTarget3BanklCaseStart) ' Resets variables back to initial starting

point
m_fpxTarget3Banklp3=(v_fpxTarget3BanklCaseStart):m_fpxTarget3Banklp4=

(v_fpxTarget3BanklCaseStart)

END IF

End Sub

" Run from NewBall(). Also used as a blanket reset called from tilt, startup and
game over subroutines.
Sub Target3Bank1fpxBallReset()

IF v_fpxTarget3Bank1On=1 THEN ' Check if vault item is
being used

IF VaultTarget3Bank1fpxDebug=1 THEN AddDebugText
"Target3BanklfpxBallReset()" ' Dev Debug Code
TimerTarget3Banklfpx.Set True, 20 ' Resets targets (after
set delay time) Note we do this here before the memory check

If v_fpxTarget3Bank1Memory=1 Then ' Look to see if
player memory feature is on if it is then...

Target3Bank1fpxMemoryLoad() 'Load in last
v_fpxTarget3BanklCaseStart made from loss of previous ball

ELSE " or if player memory feature is off

FOR x =1 To (v_fpxTarget3Bankl1LightCount):
v_fpxTarget3Bank1Lights(1,x).State = BulbOff:NEXT " We turn off all the
lights first before we update the scoring

FORx=1TO
v_fpxTarget3Bank1BulbCount:v_fpxTarget3Bank1Bulbs(1,x).State =
BulbOn:NEXT " We turn on all the Bulb lights first before we update the
scoring

IF v_fpxTarget3Bank1lCaseStart > 1 THEN v_fpxTarget3Bank1lCaseStart = 1
" error catcher and prevents people from cheezing
v_fpxTarget3BanklCase=(v_fpxTarget3BanklCaseStart)
'Reset v_fpxTarget3BanklCase back to the beginning(user selectable top of
script)
CloseVaultTarget3Bank1fpx() ' runs the correct light routine

203 /251

fpxEngine

and restores proper light if target bank player memory feature is set to 1

END IF

END IF
End Sub
' Only called from Target3Bankl1fpxBallReset() but keep here in case future
vaults need this
Sub Target3BanklfpxMemoryLoad()

IF v_fpxTarget3Bank1On=1 THEN

IF VaultTarget3Bank1fpxDebug=1 THEN AddDebugText
"Target3BanklfpxMemoryLoad()" ' Dev Debug Code

FOR x =1 TO v_fpxTarget3Bank1BulbCount:v_fpxTarget3Bank1Bulbs(1,x).State
= BulbOn:NEXT " PF bulb lights should be on, but lets make sure

Select Case CurrentPlayer " Now we look at the memory for
the player that is up to see which light should be turned back on

Case 1:v_fpxTarget3BanklCase=m_fpxTarget3Banklpl

Case 2:v_fpxTarget3Bank1Case=m_fpxTarget3Banklp2

Case 3:v_fpxTarget3Bank1Case=m_fpxTarget3Bank1p3

Case 4:v_fpxTarget3BanklCase=m_fpxTarget3Banklp4

End Select

IF v_fpxTarget3Bank1lCase> v_fpxTarget3BanklCaseEnd THEN
v_fpxTarget3BanklCase=(v_fpxTarget3BanklCaseStart) " Wraps back to
caseStart if over max CaseEnd

Select Case v_fpxTarget3BanklCase ' Restore the proper
light the extra snazzy way

Case0:FORx=1To
(v_fpxTarget3Bankl1LightCount):v_fpxTarget3Bank1Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank1Blinkintervals/4),BulbOn:NEXT

Casel:FORx=1To
(v_fpxTarget3BanklLightCount):v_fpxTarget3Bank1Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank1Blinkintervals/4),BulbOn:NEXT

Case2:FORx=1To
(v_fpxTarget3BanklLightCount):v_fpxTarget3Bank1Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank1Blinkintervals/4),BulbOn:NEXT

Case Else:FORx=1To
(v_fpxTarget3Bank1LightCount):v_fpxTarget3BanklLights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank1Blinkintervals/4),BulbOn:NEXT
End Select

IF VaultTarget3Bank1fpxDebug=1 AND v_fpxTarget3Bank1On=1 THEN

' Dev Debug Code

AddDebugText " - m_fpxTarget3Banklpl= " &
(m_fpxTarget3Bank1pl):AddDebugText " - m_fpxTarget3Banklp2 = " &
(m_fpxTarget3Bank1p2):AddDebugText " - m_fpxTarget3Bank1lp3 = " &
(m_fpxTarget3Bank1p3):AddDebugText " - m_fpxTarget3Banklp4 = " &
(m_fpxTarget3Bank1p4)

END IF

END IF
End Sub
" Only called from AddVaultTarget3Bank1fpx() but keep here in case future
vaults need this
Sub Target3Bankl1fpxMemorySave()

IF v_fpxTarget3Bank1On=1 THEN ' Check if vault item is
being used

204 /251

fpxEngine

IF VaultTarget3Bank1fpxDebug=1 THEN AddDebugText

"Target3BanklfpxMemorySave()" ' Dev Debug Code
Select Case CurrentPlayer " we see which player is
playing.

Case 1:m_fpxTarget3Banklpl=v_fpxTarget3BanklCase
Case 2:m_fpxTarget3Banklp2=v_fpxTarget3Bankl1Case
Case 3:m_fpxTarget3Banklp3=v_fpxTarget3BanklCase
Case 4:m_fpxTarget3Banklp4=v_fpxTarget3BanklCase
End Select
END IF

End Sub

" /[END fpx Vault Target(3)Bank1

I kkkkkkkkhkkkkhkkhkkkkkhkkkx

fo Vault *x

R R R T e R R e e R e R R R e R R T e R R e R R T R R RS R R R e R R T R R e R R T e

' *** These subroutines are Master subroutines and are used by all Vault items

*%k%

"Run at NewBall. Also used as a blanket reset used for tilt, startup or game

over. This is used by all Vault items and called directly in the main engine code

Sub VaultBallReset()

' Standup Targets

IF v_fpxTarget3Bank1On=1 THEN Target3BanklfpxBallReset() : END IF
'v_fpxTarget3Bank1On

End Sub

' Game Start. This resets the variables. This is used by all Vault items and

called directly in the main engine code

Sub VaultGameReset()

' StandupTargets

IF v_fpxTarget3Bank1On=1 THEN Target3BanklfpxGameReset():END IF

End Sub

' Closes ScoringEvent code pointed to by background timer for additional

instructions. This is used by all Vault items and called directly in the main

engine code

' TimerCloseScoringEventCase is the control variable

Sub TimerCloseScoringEvent_Expired() ' Restore the

scoring display

End Sub

' Saves the v_fpxAVCase settings for each player at the loss of a ball

(Selectable by user). This is used by all Vault items and called directly in the

main engine code

Sub VaultAVMemorySave()

' StandupTargets

IF v_fpxTarget3Bank1On=1 THEN Target3BanklfpxMemorySave()

End Sub

' Loads the v_fpx "Case" settings for each player at the start of a ball, and

restores that value back on his next ball if Memory=1.

' This is used by all Vault items and called directly in the main engine code

Sub VaultAVMemoryLoad()

' StandupTargets

IF v_fpxTarget3Bank1On=1 THEN Target3BanklfpxMemoryLoad():END IF

end sub

205/251

Full-featured multi-format Help

generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Produce electronic books easily

vault_fpxTarget3Bank2
Vault - Stand Up Targets - vault_fpxTarget3Bank?2

@ Vault - Stand Up Targets - vault_fpxTarget3Bank?2

o How to use this Vault Item in the fpxEngine

Using this Vault item and including it in your table design is very simple. It's just a
couple copy and pastes from one fpt file to another!
Don't know How? Just click here.

vault_fpxTarget3Bank?2

£ How it works

This Vault item has 2
stages of scoring,
plus the ability to set
player memory so a
player can carry on
through the stages
with his next ball.
This Vault item also
has 2 different light
displays, a flashing
light lens routine for
the target lights
(Williams style) or a
off state that turns on
with a target hit.(Bally
style)

Q User
adjustments
(pinsettings)
v_fpxTarget3Bank
2Memory=1
- Handles the

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/create-epub-ebooks

Memory feature for
Target Score
(common pin
setting)

- Set to one if you
want the player(s)
Target Bank made
total per game in
play carried over to
his next ball in play.
- Setto 0 to have
the Target Bank
Made total per game
in play reset back to
beginning with each
new ball,
v_fpxTarget3Bank
2CaseStart =1

- Initial light to be lit
in this vault item for
start of each ball

- Set to O for no
lights at start or
"hard". (You need to
complete the routine
once before the first
light will be lit)

- Set to 1 to have the
first light on at the
start of a game

€ How to Change
Scoring (Bank)

Sub
AddVaultScoreTar
get3Bank2fpx()
This subroutine
handles scoring
when a bank is
made. you can
modify each stage
by modifying the
code with each case
setting by adding
different values
between the
brackets for higher
scores, or by adding
or replacing the
code for additional
or replacement

fpxEngine
AddScoringEvents
routines. In most
cases with
AddScoringEvent,
these are just 1 or 2
lines of code you
can copy and paste.
- Case 0: 5000
points,1000 added
to Jackpot value , 1
added to bonus
count at loss of a ball
- Case 1: 10000
points,10000 added
to Jackpot value , 1
added to bonus
count at loss of a ball
- Case 2: Awards
Jackpot Value

(AddScoringEvent
"Jackpot”)

- Case Else: This is
a error catcher, you
should just leave this
alone.

& How to Change scoring (Single)

Sub AddVaultScoreTarget3Bank2fpx()

This subroutine handles scoring when a bank is made. you can modify each stage
by modifying the code with each case setting by adding different values between
the brackets for higher scores, or by adding or replacing the code for additional or
replacement fpxEngine AddScoringEvents routines. In most cases with
AddScoringEvent, these are just 1 or 2 lines of code you can copy and paste.

- Case 1: 5000 points, 5000 added to Jackpot, and 1 bonus added to the Bonus
Countdown when the player loses his ball.

- Case 2: 10000 points, 10000 added to Jackpot, and 1 bonus added to the
Bonus Countdown when the player loses his ball. The player is also awarded a
Jackpot value.

Sub Target3Bankl1fpx1_ Hit(),Sub Target3Bank2fpx2_Hit(),Sub
Target3Bank1fpx3_Hit()

This subroutine handles scoring when a single target is made. you can modify this
just by changing the scoring code by adding different values between the brackets
for higher scores

This is for when the target is not made, or is not "lit".
AddScore(1000) ' Adds the value within the brackets to your player(s) score for
Single Target Hit (not entire bank)

AddJackpot(1000) " Adds the value within the brackets to the Jackpot
value which can be collected later on in the game
AddBonus(1) " Adds one bonus within the brackets to the End-Of-Ball

Bonus Countdown routine

When a target is already made or "lit", the scoring will be different
AddScore(5000) ' Adds the value within the brackets to your player(s) score for
Single Target Hit (not entire bank)

AddJackpot(5000) " Adds the value within the brackets to the Jackpot
value which can be collected later on in the game
AddBonus(1) " Adds one bonus within the brackets to the End-Of-Ball

Bonus Countdown routine
© List of Objects
These objects are needed for the entire script to work. If you accidentally delete one of

these objects and then run the table, the table will throw up a error message telling you a
object is missing. If you restore that object back, your table will run fine.

This is a list of all the objects needed:

Lights
LightTarget3Bank2fpx1
LightTarget3Bank2fpx2
LightTarget3Bank2fpx3
LightTarget3Bank2fpx4

Bulbs

BulbTarget3Bank2fpx1

PlasticTarget3Bank2fpx1
Objects

Target3Bank2fpx1

Target3Bank2fpx2

Target3Bank2fpx3

TimerTarget3Bank2fpx

t Target3Bank2fpx1

© Additional Information

e All Stand Up Targets objects are set to Layer 2 in your editor. Each major group of Vault

items are set to their own layer for easy moving and modification.

Layer 9 are reserved for the top (header) and Bottom (slingshots/flippers/aprons)
Layer O is reserved for the fpxEngine objects.

All objects can be modified or rotated to fit your design. Consult the FP manual for
making changes directly in the editor, or visit the_Pinball Nirvana website if you get
really stuck.

3

A Note

fpxEngine uses a shaped light as a "plastic”, as well as a semi-transparent surface
as a edge around it. This is set to a height of 32mm, to form a proper cover over
posts/rubbers etc that the ball can roll underneath. The Plastic light is part of the bulb
code, it will flash in unison with the bulbs underneath, and can not be deleted without
causing a error message when you run the table. Plastics always have the word in
front of the file name. Semi-transparent edges (surfaces) always has the "t_ in front
of the name.

© vault Worksheet

https://pinballnirvana.com/forums/

fpxEngine

The very nature of the fpxEngine is to allow absolute beginners to build and create complex
tables with as little actual experience as possible, but you still need to learn a tiny bit of
coding sometimes. Most of the Vault items will be based on the actual arcade table it came
from, so it's just a quick copy and paste the design elements, the code, and then adding
lights in the LightList manager.

More advanced coders though may wish to duplicate or modify this code to run different
routines. This Vault item worksheet is the master template | use to create vault items from,
so if you decide to duplicate or modify this vault item, you can change it easily using this
worksheet. For more information, check the Using the Vault Worksheets page.

co ' * Find and replace code keywords for duplication or new vault items

de ' replacement table vault name keyword: fpx
' replacement object keyword: Target3Bankl
' Remark Keyword: Target3Bank2
' Codeing Names Keywords
"v_ variables keyword
"m_ memory keyword
"VaultTarget3Bank2fpxDebug ' Debug
'v_fpxTarget3Bank20n ' Turns on or off this vault item. (Prevents errors if no
objects on the table)
'v_fpxTarget3Bank2CaseStart ' Initial starting case(position) for Bank made
'v_fpxTarget3Bank2Memory ' Handles memory for each player
'v_fpxTarget3Bank2Case ' Bank scoring control case
'v_fpxTarget3Bank2UseWilliamsLights ' Flashing chaser lights (wms) or no
flashing (bally) lights
'v_fpxTarget3Bank2Blinkintervals ' Interval of flashing lights
'v_fpxTarget3Bank2CaseEnd ' Last case (position) for each bank made
'v_fpxTarget3Bank2CaseRepeat
'v_fpxTarget3Bank2Lights(9,9) 'Use in FOR/NEXT loops. 9 groups with 9
objects in each group max.
'v_fpxTarget3Bank2Bulbs(9,9) 'Use in FOR/NEXT loops. 9 groups with 9
objects in each group max.
'v_fpxTarget3Bank2LightCount ' Total amount of lights used
'v_fpxTarget3Bank2BulbCount ' Total amount of bulbs used
'm_fpxTarget3Bank2pl " Variable for Player 1 memory
"m_fpxTarget3Bank2p2 " Variable for Player 2 memory
'm_fpxTarget3Bank2p3 " Variable for Player 3 memory
'm_fpxTarget3Bank2p4 ' Variable for Player 4 memory
' * Subroutines
" AddVaultScoreTarget3Bank2fpx() ' Main Bank Scoring (user adjustable)
' Target3Bank2fpx1_Hit() ' Hit routine for object (user adjustable)
' Target3Bank2fpx2_Hit() ' Hit routine for object (user adjustable)
' Target3Bank2fpx3_Hit() ' Hit routine for object (user adjustable)
" AddVaultTarget3Bank2fpx() ' Main bank scoring routine (Vault Engine)
' CloseVaultTarget3Bank2fpx() ' Used in player memory to restore the proper
lights
' Target3Bank2fpxLightControl() ' Main lighting routine
' Target3Bank2fpxGameReset() ' Start game routine
' Target3Bank2fpxBallReset() ' New ball routine

210/251

fpxEngine

' Target3Bank2fpxMemoryLoad() ' Load player memory

' Target3Bank2fpxMemorySave() ' Saves player memory
" * Unique subroutines to this vault

' TimerTarget3Bank2fpx_Expired() ' Timer to reset after set delay.
'* Lights

' LightTarget3Bank2fpx1

' LightTarget3Bank2fpx2

' LightTarget3Bank2fpx3

' LightTarget3Bank2fpx4

' * Bulbs

' BulbTarget3Bank2fpx1

' PlasticTarget3Bank2fpx1

'* Objects

' Target3Bank2fpx1

' Target3Bank2fpx2

' Target3Bank2fpx3

' TimerTarget3Bank2fpx

"t _Target3Bank2fpxl

' * fpx Vault Target3Bank2 *

' For the fpxEngine.

' 1. Make sure all layers in the FP editor are "visible".

' Copy all the table elements in the editor from this fpt and then paste these

elements into your fpxEngine table.

' 2. Set User adjustments below to suit, then copy this entire script from this fpt

and paste into the script for your fpx table.

" I recommend pasting in the HIT SECTION.

" 3. Add Lights,plastics and bulbs to your LightList Manager in your fpx table.

' - Look for the names listed on the left side in the LightList Manager to have

"light", "bulb" or "plastic" as fpx will use these words

" at the beginning of the object name for all Vault Items

' - If you do not know how to transfere the lights, both the fpx manual (in the

vault pages) and the Future Pinball manual explains how to do this.

"4. Press "play"!

'* User adjustments *

"Initial light to be lit in this vault item for start of each ball, set to 0 for no lights at

start or "hard".

" (You need to complete the routine once before the first light will be lit)

' Set to 1 to have the first light on at the start of a game
v_fpxTarget3Bank2CaseStart = 1 ' Variable to hold

DropTarget Bank starting value

' Handles the Memory feature for Target Score (common pin setting)

' Set to one if you want the player(s) Target Bank made total per game in play

carried over to his next ball in play.

' Set to 0 to have the Target Bank Made total per game in play reset back to

beginning with each new ball,

'as set by v_fpxTarget3Bank2CaseStart above.
v_fpxTarget3Bank2Memory=1 " Variable to hold Target

Bank Score Value from ball to Ball (for each player)

211/251

fpxEngine

' Each of the main companies in the 1980's producing pinball tables had a
unique style to their games. Williams with their targets had the "chaser" lights
"in front of their targets blinking rapidly that turned solid (or "on") when a ball
struck a target (like in Firepower), while Bally had their lights turned completely
" Off and then turned on the lights with a target hit. This pinsetting simulates
both styles, by default this is set to Williams style
v_fpxTarget3Bank2UseWilliamsLights=1 ' 0=Bally(no light on
before hit) 1=Williams (light is blinking before hit)
T k%% SCOI’Ing *k*k
" Allows you to set the scoring. Everything else is done for you within the engine.
You can add/change anything you want in here
' like adding a multiplier or turning on Inlane lights etc. See Beginners Guide in
manual
Sub AddVaultScoreTarget3Bank2fpx()
If v_fpxTarget3Bank20n=1 THEN
Select Case v_fpxTarget3Bank2Case

Case 0 ' This is used as the starting TargetBank score
if v_fpxTarget3Bank2CaseStart = 0.

AddScore(5000) ' Adds the value within the brackets to
your player(s) score

AddJackpot(1000) ' Adds the value within the brackets
to the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to
the End-Of-Ball Bonus Countdown routine

Casel ' This is used as the starting TargetBank score
if v_fpxTarget3Bank2CaseStart = 1.

AddScore(10000)

AddJackpot(10000)

AddBonus(1)

Case 2

AddScoringEvent "Jackpot” ' Collects the Jackpot value

Case Else ' Case else will score if case is higher than

5, and will keep repeating

v_fpxTarget3Bank2Case=1 : AddVaultScoreTarget3Bank2fpx() '
Error catcher, this loops back to case 1

End Select
End If
End Sub
' Target Hit . You need to set a scoring value here for a single target hit that
doesn't complete a bank
Sub Target3Bank2fpx1_Hit()
If v_fpxTarget3Bank20n=1 THEN

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF

' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

IF LightTarget3Bank2fpx1.State=BulbOff OR
LightTarget3Bank2fpx1.State=BulbBlink Then ' Note we check for light
state for both Bally and wms styles

LightTarget3Bank2fpx1.State=BulbOn ' Need to turn on the

light first so AddVaultTarget3Bank2fpx() will work if all 3 lights are set to BulbOn

212/251

fpxEngine

AddScore(1000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)
AddJackpot(1000) ' Adds the value within the brackets to

the Jackpot value which can be collected later on in the game
AddMusicSet "drop”

Else " If the target light is already lit

AddScore(5000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(5000) " Adds the value within the brackets to
the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the

End-Of-Ball Bonus Countdown routine
AddMusicSet "drop”

END IF

v_fpxTarget3Bank2Lights(1,1).FlashForMs (MusiclntervalTime),
(v_fpxTarget3Bank2Blinkintervals/4),BulbOn ' Fancy blinking when hit
then bulb is lit

AddVaultTarget3Bank2fpx() " Routine to check if Bank is
made.

set LastSwitchHit = Target3Bank2fpx1 ' FP code we can use
if needed. Just good programing

END IF
End Sub

Sub Target3Bank2fpx2_Hit()
If v_fpxTarget3Bank20n=1 THEN
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF
' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

IF LightTarget3Bank2fpx2.State=BulbOff OR
LightTarget3Bank2fpx2.State=BulbBlink Then ' Note we check for light
state for both Bally and wms styles

LightTarget3Bank2fpx2.State=BulbOn " Need to turn on the
light first so AddVaultTarget3Bank2fpx() will work if all 3 lights are set to BulbOn

AddScore(1000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(1000) " Adds the value within the brackets to

the Jackpot value which can be collected later on in the game
AddMusicSet "drop”

Else "If the target light is already lit

AddScore(5000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(5000) ' Adds the value within the brackets to
the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the

End-Of-Ball Bonus Countdown routine
AddMusicSet "drop”

END IF

v_fpxTarget3Bank2Lights(1,2).FlashForMs (MusicIntervalTime),
(v_fpxTarget3Bank2Blinkintervals/4),BulbOn ' Fancy blinking when hit
then bulb is lit

AddVaultTarget3Bank2fpx() ' Routine to check if Bank is

213/251

fpxEngine

made.
set LastSwitchHit = Target3Bank2fpx2 " FP code we can use
if needed. Just good programing
END IF
End Sub

Sub Target3Bank2fpx3_Hit()
If v_fpxTarget3Bank20n=1 THEN
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub : END IF
' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

IF LightTarget3Bank2fpx3.State=BulbOff OR
LightTarget3Bank2fpx3.State=BulbBlink Then " Note we check for light
state for both Bally and wms styles

LightTarget3Bank2fpx3.State=BulbOn "Need to turn on the
light first so AddVaultTarget3Bank2fpx() will work if all 3 lights are set to BulbOn

AddScore(1000) ' Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(1000) ' Adds the value within the brackets to

the Jackpot value which can be collected later on in the game
AddMusicSet "drop”

Else " If the target light is already lit

AddScore(5000) " Adds the value within the brackets to
your player(s) score for Single Target Hit (not entire bank)

AddJackpot(5000) ' Adds the value within the brackets to
the Jackpot value which can be collected later on in the game

AddBonus(1) " Adds one bonus within the brackets to the

End-Of-Ball Bonus Countdown routine
AddMusicSet "drop”

END IF

v_fpxTarget3Bank2Lights(1,3).FlashForMs (MusicIntervalTime),
(v_fpxTarget3Bank2Blinkintervals/4),BulbOn " Fancy blinking when hit
then bulb is lit

AddVaultTarget3Bank2fpx() ' Routine to check if Bank is
made.

set LastSwitchHit = Target3Bank2fpx3 ' FP code we can use
if needed. Just good programing

END IF
End Sub

" Engine code, do not change or modify. This is needed by the engine to
reconize this vault item. Changing this will cause errors.
v_fpxTarget3Bank20n=1 "KEEP THIS SET TO 1.

Dim
v_fpxTarget3Bank20n
v_fpxTarget3Bank2CaseStart

214251

fpxEngine

,v_fpxTarget3Bank2Memory
Vv_fpxTarget3Bank2Case,v_fpxTarget3Bank2UseWilliamsLights ' Variables
Dim

v_fpxTarget3Bank2Blinkintervals
Vv_fpxTarget3Bank2CaseEnd,v_fpxTarget3Bank2CaseRepeat

Dim

v_fpxTarget3Bank2Lights

(
9

9),v_fpxTarget3Bank2Bulbs
(9,9),v_fpxTarget3Bank2LightCount,v_fpxTarget3Bank2BulbCount '
Variables used in For/Next loops
Dim
m_fpxTarget3Bank2pl
,m_fpxTarget3Bank2p2,m_fpxTarget3Bank2p3,m_fpxTarget3Bank2p4
" Variables for Player(s) memory
If v_fpxTarget3Bank20n=1 THEN ' Checks if vault item is
being used

Setv_fpxTarget3Bank2Lights(1,1)=LightTarget3Bank2fpx1:Set
v_fpxTarget3Bank2Lights(1,2)=LightTarget3Bank2fpx2:Set
v_fpxTarget3Bank2Lights(1,3)=LightTarget3Bank2fpx3 ' Define lights used in
FOR/NEXT loops

Set v_fpxTarget3Bank2Lights(1,4)=LightTarget3Bank2fpx4

Set v_fpxTarget3Bank2Bulbs(1,1)=BulbTarget3Bank2fpx1:Set
v_fpxTarget3Bank2Bulbs(1,2)=PlasticTarget3Bank2fpx1 ' Define Bulbs
used in FOR/NEXT loops
v_fpxTarget3Bank2LightCount = 4:v_fpxTarget3Bank2BulbCount = 2

" Number of lights and number of bulbs used in FOR NEXT loops
v_fpxTarget3Bank2CaseEnd =2 " Amount of scoring cases
before wraps to CaseStart

v_fpxTarget3Bank2CaseRepeat=1
' BAM bulb

BulbTarget3Bank2fpx1EXT
.Brightness=(fpxBulbBrightness):BulbTarget3Bank2fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbTarget3Bank2fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)

PlasticTarget3Bank2fpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticTarget3Bank2fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticTarget3Bank2fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

"light lens

LightTarget3Bank2fpx1EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank2fpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank2fpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightTarget3Bank2fpx2EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank2fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank2fpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightTarget3Bank2fpx3EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank2fpx3EXT

215/251

fpxEngine

.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank2fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightTarget3Bank2fpx4EXT
.Brightness=(fpxLensBrightness):LightTarget3Bank2fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightTarget3Bank2fpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)
End If
' Main scoring routine. On target bank, v_fpxTarget3Bank2Case increases by
one, then runs that number in the matching case
Sub AddVaultTarget3Bank2fpx()

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF

' See if in tilt state or no game in progress to exit the subroutine and stop

any scoring

If v_fpxTarget3Bank20n=1 THEN ' Check if vault
item is being used

IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText
"AddVaultTarget3Bank2fpx()" ' Dev Debug Code

If LightTarget3Bank2fpx1.State=BulbOn AND
LightTarget3Bank2fpx2.State=BulbOn AND
LightTarget3Bank2fpx3.State=BulbOn THEN

FORx=1To
(v_fpxTarget3Bank2LightCount).v_fpxTarget3Bank2Lights
(1,x).State=BulbOff:NEXT " All lens lights off first
LockDisplay=0 ' Clears any music priorty code
FORx=1TO

v_fpxTarget3Bank2BulbCount:v_fpxTarget3Bank2Bulbs(1,x).FlashForMs
(MusicintervalTime), (DisplayBlinkinterval), BulbOn:NEXT ' Bulbs behind object
will Blink rapidly for time set

' Note. Default music is overwritten by any AddScoringEvent code, so you
need this default in case there is no special scoring feature

AddMusicSet "dropbank™

Target3Bank2fpxLightControl() ' Reset lights

Select Case v_fpxTarget3Bank2Case

CaseO: "v_fpx CaseStart = 0. no light lens till next
case

Case 1: v_fpxTarget3Bank2Lights(1,4).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn ' First bank made, Turn on Jackpot light

Case 2: ' Second Bank made

Case Else : v_fpxTarget3Bank2Case=(v_fpxTarget3Bank2CaseStart)
" error catcher

End Select

AddVaultScoreTarget3Bank2fpx() ' Goto scoring
code as set by user. Must be before increase case code! (geez shiva)

v_fpxTarget3Bank2Case = v_fpxTarget3Bank2Case+1
Increases value by 1 for select case routines

IF v_fpxTarget3Bank2Case> v_fpxTarget3Bank2CaseEnd THEN

v_fpxTarget3Bank2Case=(v_fpxTarget3Bank2CaseStart) "Wraps back to
CaseStart if over max CaseEnd

Target3Bank2fpxMemorySave() ' Save Case Value
to that players memory

END IF

216/251

fpxEngine

END IF
End Sub
" Timer to reset target bank after a delay.
Sub TimerTarget3Bank2fpx_Expired()
TimerTarget3Bank2fpx.Enabled = False
If v_fpxTarget3Bank20n=1 THEN
IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText

"TimerTarget3Bank2fpx_Expired()" ' Dev Debug Code
FOR x =1 To (v_fpxTarget3Bank2LightCount):
v_fpxTarget3Bank2Lights(1,x).State = BulbOff:NEXT "We need to

restore the light memory for each player, so all lights off

IF v_fpxTarget3Bank2Case=2 THEN
v_fpxTarget3Bank2Lights(1,4).State=BulbOn " Jackpot Light blinks
rapidly for time set

Target3Bank2fpxLightControl() ' Restore the target lights to
start again

END IF
End sub
' runs the correct light routine and restores proper light if
v_fpxTarget3Bank2Memory=1
Sub CloseVaultTarget3Bank2fpx()

If v_fpxTarget3Bank20n=1 THEN ' Only if this
feature is set to "1" and nothing else

IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText
"CloseVaultTarget3Bank2fpx()" ' Dev Debug Code
Target3Bank2fpxLightControl() ' Restore the target lights to
start again

Select Case v_fpxTarget3Bank2Case ' Sets next
light to display based on Case

Case O:

Case 1:

Case 2: v_fpxTarget3Bank2Lights(1,4).State = BulbOn "Turn on
Jackpot Light

Case Else : v_fpxTarget3Bank2Case=1 " error catcher

END SELECT

END IF
End Sub
' Main bank scoring routine
Sub Target3Bank2fpxLightControl()

If v_fpxTarget3Bank20n=1 THEN

IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText

"Target3Bank2fpxLightControl()" ' Dev Debug Code
" Only if this feature is set to "1" and nothing else
v_fpxTarget3Bank2Blinkintervals=150 ' Blink Intervals

LightTarget3Bank2fpx1.Blinkinterval =
(v_fpxTarget3Bank2Blinkintervals):LightTarget3Bank2fpx2.BlinkInterval =
(v_fpxTarget3Bank2Blinkintervals)

LightTarget3Bank2fpx3.Blinkinterval =
(v_fpxTarget3Bank2Blinkintervals):LightTarget3Bank2fpx4.Blinkinterval =
(v_fpxTarget3Bank2Blinkintervals)

LightTarget3Bank2fpx1.BlinkPattern =

2171251

fpxEngine

"100":LightTarget3Bank2fpx2.BlinkPattern =
"010":LightTarget3Bank2fpx3.BlinkPattern =
"001":LightTarget3Bank2fpx4.BlinkPattern = "010" ' Blink Pattern

IF v_fpxTarget3Bank2UseWilliamsLights THEN

FOR x =1 To (v_fpxTarget3Bank2LightCount-1):
v_fpxTarget3Bank2Lights(1,x).State = BulbBlink:NEXT "(WMS) all lights
Blink

ELSE

FOR x =1 To (v_fpxTarget3Bank2LightCount-1):
v_fpxTarget3Bank2Lights(1,x).State = BulbOff:NEXT ' (Bally) Turns off
lights

END IF

END IF
End Sub
' Start Game Routine
Sub Target3Bank2fpxGameReset()

IF v_fpxTarget3Bank20n=1 THEN ' Check if vault item is
being used

IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText
"Target3Bank2fpxGameReset()" ' Dev Debug Code

FOR x =1 To (v_fpxTarget3Bank2LightCount):
v_fpxTarget3Bank2Lights(1,x).State = BulbOff:NEXT " We turn off all the

Bulb lights first before we update the scoring
v_fpxTarget3Bank2Case=(v_fpxTarget3Bank2CaseStart) '

Resets scoring case setting back to starting default (set in vault user options)
m_fpxTarget3Bank2pl=(v_fpxTarget3Bank2CaseStart):m_fpxTarget3Bank2p2=

(v_fpxTarget3Bank2CaseStart) ' Resets variables back to initial starting

point
m_fpxTarget3Bank2p3=(v_fpxTarget3Bank2CaseStart):m_fpxTarget3Bank2p4=

(v_fpxTarget3Bank2CaseStart)

END IF

End Sub

" Run from NewBall(). Also used as a blanket reset called from tilt, startup and
game over subroutines.
Sub Target3Bank2fpxBallReset()

IF v_fpxTarget3Bank20n=1 THEN ' Check if vault item is
being used

IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText
"Target3Bank2fpxBallReset()" ' Dev Debug Code
TimerTarget3Bank2fpx.Set True, 20 ' Resets targets (after
set delay time) Note we do this here before the memory check

If v_fpxTarget3Bank2Memory=1 Then " Look to see if
player memory feature is on if it is then...

Target3Bank2fpxMemoryLoad() "Load in last
v_fpxTarget3Bank2CaseStart made from loss of previous ball

ELSE " or if player memory feature is off

FOR x =1 To (v_fpxTarget3Bank2LightCount):
v_fpxTarget3Bank2Lights(1,x).State = BulbOff:NEXT " We turn off all the
lights first before we update the scoring

FORx=1TO

218/251

fpxEngine

v_fpxTarget3Bank2BulbCount:v_fpxTarget3Bank2Bulbs(1,x).State =
BulbOn:NEXT "We turn on all the Bulb lights first before we update the
scoring
IF v_fpxTarget3Bank2CaseStart > 1 THEN v_fpxTarget3Bank2CaseStart = 1
" error catcher and prevents people from cheezing
v_fpxTarget3Bank2Case=(v_fpxTarget3Bank2CaseStart)
' Reset v_fpxTarget3Bank2Case back to the beginning(user selectable top of
script)
CloseVaultTarget3Bank2fpx() ' runs the correct light routine
and restores proper light if target bank player memory feature is set to 1
END IF
END IF
End Sub
' Only called from Target3Bank2fpxBallReset() but keep here in case future
vaults need this
Sub Target3Bank2fpxMemoryLoad()
IF v_fpxTarget3Bank20n=1 THEN
IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText
"Target3Bank2fpxMemoryLoad()" ' Dev Debug Code
FOR x =1 TO v_fpxTarget3Bank2BulbCount:v_fpxTarget3Bank2Bulbs(1,x).State
= BulbOn:NEXT " PF bulb lights should be on, but lets make sure
Select Case CurrentPlayer " Now we look at the memory for
the player that is up to see which light should be turned back on
Case 1:v_fpxTarget3Bank2Case=m_fpxTarget3Bank2pl
Case 2:v_fpxTarget3Bank2Case=m_fpxTarget3Bank2p2
Case 3:v_fpxTarget3Bank2Case=m_fpxTarget3Bank2p3
Case 4:v_fpxTarget3Bank2Case=m_fpxTarget3Bank2p4
End Select
IF v_fpxTarget3Bank2Case> v_fpxTarget3Bank2CaseEnd THEN
v_fpxTarget3Bank2Case=(v_fpxTarget3Bank2CaseStart) " Wraps back to
caseStart if over max CaseEnd
Select Case v_fpxTarget3Bank2Case ' Restore the proper
light the extra snazzy way
Case0:FORx=1To
(v_fpxTarget3Bank2LightCount):v_fpxTarget3Bank2Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank2Blinkintervals/4),BulbOn:NEXT
Casel:FORx=1To
(v_fpxTarget3Bank2LightCount):v_fpxTarget3Bank2Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank2Blinkintervals/4),BulbOn:NEXT
Case2:FORx=1To
(v_fpxTarget3Bank2LightCount):v_fpxTarget3Bank2Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank2Blinkintervals/4),BulbOn:NEXT
Case Else:FORx=1To
(v_fpxTarget3Bank2LightCount):v_fpxTarget3Bank2Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxTarget3Bank2Blinkintervals/4),BulbOn:NEXT
End Select
IF VaultTarget3Bank2fpxDebug=1 AND v_fpxTarget3Bank20n=1 THEN
' Dev Debug Code
AddDebugText " - m_fpxTarget3Bank2pl = " &
(m_fpxTarget3Bank2pl):AddDebugText " - m_fpxTarget3Bank2p2 = " &
(m_fpxTarget3Bank2p2):AddDebugText " - m_fpxTarget3Bank2p3 = " &
(m_fpxTarget3Bank2p3):AddDebugText " - m_fpxTarget3Bank2p4 = " &

219/251

fpxEngine

(m_fpxTarget3Bank2p4)
END IF
END IF
End Sub
' Only called from AddVaultTarget3Bank2fpx() but keep here in case future
vaults need this
Sub Target3Bank2fpxMemorySave()

IF v_fpxTarget3Bank20n=1 THEN ' Check if vault item is
being used

IF VaultTarget3Bank2fpxDebug=1 THEN AddDebugText
"Target3Bank2fpxMemorySave()" ' Dev Debug Code

Select Case CurrentPlayer "we see which player is
playing.

Case 1:m_fpxTarget3Bank2pl=v_fpxTarget3Bank2Case
Case 2:m_fpxTarget3Bank2p2=v_fpxTarget3Bank2Case
Case 3:m_fpxTarget3Bank2p3=v_fpxTarget3Bank2Case
Case 4:m_fpxTarget3Bank2p4=v_fpxTarget3Bank2Case
End Select
END IF

End Sub

' JEND fpx Vault Target3Bank2

R R T e R R e e R R R R R e R R T e R R e R R T R R RS R R R e R R T R R e R R T

L Vault o

U kkkkkkkkhkkhkhkkkhkkkkkkkkkkhkhkkkkhkkkkhkkkkhkkkkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkkkkk

' *** These subroutines are Master subroutines and are used by all Vault items
*%k%
" Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine code
Sub VaultBallReset()

' Standup Targets

IF v_fpxTarget3Bank20n=1 THEN Target3Bank2fpxBallReset() : END IF

'v_fpxTarget3Bank20n

End Sub
' Game Start. This resets the variables. This is used by all Vault items and
called directly in the main engine code
Sub VaultGameReset|()

' StandupTargets

IF v_fpxTarget3Bank20n=1 THEN Target3Bank2fpxGameReset():END IF
End Sub
' Closes ScoringEvent code pointed to by background timer for additional
instructions. This is used by all Vault items and called directly in the main
engine code
' TimerCloseScoringEventCase is the control variable
Sub TimerCloseScoringEvent_Expired() ' Restore the
scoring display
End Sub
' Saves the v_fpxAVCase settings for each player at the loss of a ball
(Selectable by user). This is used by all Vault items and called directly in the
main engine code
Sub VaultAVMemorySave()

' StandupTargets

220/251

fpxEngine

IF v_fpxTarget3Bank20n=1 THEN Target3Bank2fpxMemorySave()

End Sub

' Loads the v_fpx "Case" settings for each player at the start of a ball, and
restores that value back on his next ball if Memory=1.

' This is used by all Vault items and called directly in the main engine code
Sub VaultAVMemoryLoad()

' StandupTargets

IF v_fpxTarget3Bank20n=1 THEN Target3Bank2fpxMemoryLoad():END IF
end sub

Full-featured multi-format Help
generator

Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easily create Help documents

Vault - Triggers

Create help files for the Qt Help Framework

vault_fpxAV1
Vault - Triggers Targets - fpxTAV1

@ Vault - Triggers - fpxAV1

o How to use this Vault Item in the fpxEngine

Using this Vault item and including it in your table design is very simple. It's just a
couple copy and pastes from one fpt file to another!
Don't know How? Just click here.

vault_fpxTarget3Bankl

221/251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

fpxEngine

222 /251

£ How it works

This Vault item has a
Advancing Value
system, which is set
to increase a set
value everytime the
ball rolls over the top
trigger. There are also
code for the two
rubbers, as well as a
Target that when hit
will light up that target
for a bonus that is
added to the bonus
countdown at the loss
of a ball.

O User

adjustments

(pinsettings)
v_fpxAV1Memory=
1
- Handles the
Memory feature for
Target Score
(common pin setting)
- Set to one if you
want the player(s)
Target Bank made
total per game in play
carried over to his
next ball in play.
- Setto 0 to have the
Target Bank Made
total per game in play
reset back to
beginning with each
new ball,
v_fpxAV1CaseStart
=1
- Initial light to be lit in
this vault item for start
of each ball
- Set to O for no lights
at start or "hard". (You
need to complete the
routine once before
the first light will be lit)
- Set to 1 to have the
first light on at the

start of a game

& How to Change Scoring (Bank)

Sub AddVaultScorefpxAV1()

This subroutine handles scoring when a bank is made. you can modify each stage
by modifying the code with each case setting by adding different values between
the brackets for higher scores, or by adding or replacing the code for additional or
replacement fpxEngine AddScoringEvents routines. In most cases with
AddScoringEvent, these are just 1 or 2 lines of code you can copy and paste.
This uses a Star trigger, which has a light attached to it. The first time you roll over
the Star Trigger, that light will be lit, and score a single bonus added to the bonus
countdown at the loss of a players ball.

- Case 0: 500 points,500 added to Jackpot value

- Case 1: 1000 points,1000 added to Jackpot value

- Case 2: 2000 points,2000 added to Jackpot value

- Case 3: 4000 points,4000 added to Jackpot value

- Case 4: 6000 points,6000 added to Jackpot value

- Case 5: 8000 points,8000 added to Jackpot value

- Case 6: 10000 points,10000 added to Jackpot value

- Case 7: Special

- Case 8: 10000 points,10000 added to Jackpot value

£ How to Change scoring (Target Objects)

Sub TargetAV1fpx1 Hit()

This subroutine handles scoring when the single Target is made. There are two
stages, one for when the target is lit, and the second for when the Target is unlit. If
you hit the target when it is unlit, the light for the target will lite up. The target is set
to be automatically unlit when the trigger is rolled over, so the player will have to hit
the target again to light it up. You can modify these 2 stages by modifying the code
by adding different values between the brackets for higher scores, or by adding or
replacing the code for additional or replacement fpxEngine AddScoringEvents
routines. In most cases with AddScoringEvent, these are just 1 or 2 lines of code
you can copy and paste.

C IF LightAV1fpx8.State=BulbOff THEN

0 AddScore(5000):AddJackpot(5000):AddMusicSet "trigger"”

d ELSE

€ AddScore(1000):AddJackpot(1000):AddBonus (1):AddMusicSet
"inlaneislit"
END IF

© How to Change scoring (Rubber Objects)

Sub RubberAV1fpx1 Hit(), Sub RubberAV1fpx3_Hit()

There are 2 Rubber objects which also score. These are set to the standard
"sling" music sound, and will score 10 points when the ball strikes the rubber.
RubberAV1fpx1 also contains code for the Alternating Lights scoring feature. If
you do not wish to use this feature, just delete the light in the script.

C 'Rubber hits. You can use AddAlternatingLanes if you want.
0 Sub RubberAV1fpx1 Hit()
d IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
e Ifv_fpxAV10On=1 THEN
AddScore (10)

AddScoringEvent "AddAlternatingLanes" ' Alternate
Inlane/outlanes if enabled

LightsRoutineAV1fpxGroupl() " routine to flash lights/bulbs
AddMusicSet "sling"
END IF
set LastSwitchHit = TargetAV1fpx1
End Sub
" with this vault, everything is divided to 4 groups. There's no rubbers in
group 2

Sub RubberAV1fpx3_Hit()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
If v_fpxAV1On=1 THEN

AddScore (10)
LightsRoutineAV1fpxGroup3() " routine to flash lights/bulbs
AddMusicSet "sling”

END IF

set LastSwitchHit = RubberAV1fpx3

End Sub

© List of Objects

These objects are needed for the entire script to work. If you accidentally delete one of
these objects and then run the table, the table will throw up a error message telling you
a object is missing. If you restore that object back, your table will run fine.

This is a list of all the objects needed:

Lights

LightAV1fpx1

LightAV1fpx2

LightAV1fpx3

LightAV1fpx4

LightAV1fpx5

LightAV1fpx6

LightAV1fpx7

LightAV1fpx8 (used for the single target)
LightAV1fpx9 (used for the light for the trigger)

Bulbs and Plastics

Bulbs and plastics are divided into 4 groups. Group 1 is the top portion of the design.
Group 2 is the single target area. Group 3 is the narrow rubber area to the left, and Group 4
is the bottom area at the right. This is used internally within the code, it's main advantage is
this allows separate lighting effects for each group that can be run separately or in a
combination with the other 3 groups. If you are modifing the design, you can "split" apart
the design and move each group to separate locations, but you can not delete any of the
objects.

* Bulbs Group 1
BulbAV1fpx1
BulbAV1fpx2
PlasticAV1fpx1

* Bulbs Group 2
BulbAV1fpx3

PlasticAV1fpx2

* Bulbs Group 3
BulbAV1fpx4
BulbAV1fpx5
PlasticAV1fpx3

* Bulbs Group 4
BulbAV1fpx6
BulbAV1fpx7
PlasticAV1fpx4
Objects

TriggerAV1fpx1l
TargetAV1fpx1l
RubberAV1fpx1l
RubberAV1fpx3

& Additional Information

e All Stand Up Targets objects are set to Layer 4 in your editor. Each major group of Vault
items are set to their own layer for easy moving and modification.

e Layer 9 are reserved for the top (header) and Bottom (slingshots/flippers/aprons)
Layer O is reserved for the fpxEngine objects.

e All objects can be modified or rotated to fit your design. Consult the FP manual for

making changes directly in the editor, or visit the Pinball Nirvana website if you get
really stuck.

3

A Note

fpxEngine uses a shaped light as a "plastic”, as well as a semi-transparent surface
as a edge around it. This is set to a height of 32mm, to form a proper cover over
posts/rubbers etc that the ball can roll underneath. The Plastic light is part of the bulb
code, it will flash in unison with the bulbs underneath, and can not be deleted without
causing a error message when you run the table. Plastics always have the word in
front of the file name. Semi-transparent edges (surfaces) always has the "t_ in front
of the name, and are not part of the script, so you can safely delete these objects.

© vault Worksheet

The very nature of the fpxEngine is to allow absolute beginners to build and create
complex tables with as little actual experience as possible, but you still need to learn a
tiny bit of coding sometimes. Most of the Vault items will be based on the actual arcade
table it came from, so it's just a quick copy and paste the design elements, the code,
and then adding lights in the LightList manager.

More advanced coders though may wish to duplicate or modify this code to run different
routines. This Vault item worksheet is the master template | use to create vault items
from, so if you decide to duplicate or modify this vault item, you can change it easily
using this worksheet. For more information, check the Using the Vault Worksheets
page.

co ' * Find and replace code keywords for duplication or new vault items

https://pinballnirvana.com/forums/

fpxEngine

de ' replacement table vault name keyword: fpx
' replacement object keyword: AV1
' Remark Keyword: AV1
' Coding Names Keywords
'v_ variables keyword
'm_ memory keyword
"VaultAV1fpxDebug ' Debug
"v_fpxAV10n ' Turns on or off this vault item. (Prevents errors if no objects
on the table)
'v_fpxAV1CaseStart ' Initial starting case(position) for Bank made
'v_fpxAV1Memory ' Handles memory for each player
'v_fpxAV1Case ' Bank scoring control case
"v_fpxAV1Blinkintervals ' Interval of flashing lights
'v_fpxAV1CaseEnd ' Last case (position) for each bank made
'v_fpxAV1CaseRepeat
"v_fpxAV1Lights(9,9) 'Use in FOR/NEXT loops. 9 groups with 9 objects in
each group max.
'v_fpxAV1Bulbs(9,9) 'Use in FOR/NEXT loops. 9 groups with 9 objects in
each group max.
'v_fpxAV1LightCount ' Total amount of lights used
"v_fpxAV1BulbGrouplCount ' Group 1 bulb count
"v_fpxAV1BulbGroup2Count ' Group 2 bulb count
'v_fpxAV1BulbGroup3Count ' Group 3 bulb count
'v_fpxAV1BulbGroup4Count ' Group 4 bulb count
"m_fpxAV1lpl " Variable for Player 1 memory
"m_fpxAV1p2 " Variable for Player 2 memory
"m_fpxAV1p3 " Variable for Player 3 memory
"m_fpxAV1p4 " Variable for Player 4 memory
' * Subroutines
" AddVaultScoreAV1fpx() ' Main Bank Scoring (user adjustable)
" AV1fpx1 Hit() " Hit routine for object (user adjustable)
" AV1fpx2_Hit() " Hit routine for object (user adjustable)
" AV1fpx3_Hit() " Hit routine for object (user adjustable)
"AddVaultAV1fpx() ' Main bank scoring routine (Vault Engine)
' CloseVaultAV1fpx() ' Used in player memory to restore the proper lights
" AV1fpxLightControl() ' Main lighting routine
" LightsRoutineAV1fpxGroupl ' Group 1 bulb/plastics routines
" LightsRoutineAV1fpxGroup2 ' Group 2 bulb/plastics routines
' LightsRoutineAV1fpxGroup3 ' Group 3 bulb/plastics routines
" LightsRoutineAV1fpxGroup4 ' Group 4 bulb/plastics routines
" AVi1fpxGameReset() ' Start game routine
"AVlfpxBallReset() ' New ball routine
" AVl1fpxMemoryLoad() 'Load player memory
" AV1lfpxMemorySave() ' Saves player memory
" * Unique subroutines to this vault
' TimerAV1fpx_Expired() ' Timer to reset after set delay. (Not used)
'* Lights
' LightAV1fpx1
" LightAV1fpx2
" LightAV1fpx3

226/251

fpxEngine

' LightAV1fpx4

" LightAV1fpx5

" LightAV1fpx6

" LightAV1fpx7

" LightAV1fpx8

' LightAV1fpx9
"* Bulbs Group 1
' BulbAV1fpx1

' BulbAV1fpx2

' PlasticAV1fpx1
"* Bulbs Group 2
' BulbAV1fpx3

' PlasticAV1fpx2
"* Bulbs Group 3
' BulbAV1fpx4

' BulbAV1fpx5

' PlasticAV1fpx3
"* Bulbs Group 4
' BulbAV1fpx6

" BulbAV1fpx7

' PlasticAV1fpx4
' * Objects

' TriggerAV1fpx1
' TargetAV1fpx1l

' RubberAV1fpx1
" RubberAV1fpx3
'* fpx Vault AV1 *

' For the fpxEngine.
' 1. Make sure all layers in the FP editor are "visible".
' Copy all the table elements in the editor from this fpt and then paste these
elements into your fpxEngine table.
' 2. Set User adjustments below to suit, then copy this entire script from this fpt
and paste into the script for your fpx table.
" I recommend pasting in the HIT SECTION.
' 3. Add Lights,plastics and bulbs to your LightList Manager in your fpx table.
' - Look for the names listed on the left side in the LightList Manager to have
"light", "bulb” or "plastic" as fpx will use these words
" at the beginning of the object name for all Vault Items
' - If you do not know how to transfere the lights, both the fpx manual (in the
vault pages) and the Future Pinball manual explains how to do this.
"4. Press "play"!
'* User adjustments *
" Initial light to be lit in this vault item for start of each ball, set to 0 for no lights at
start or "hard".
' (You need to complete the routine once before the first light will be lit)
' Set to 1 to have the first light on at the start of a game

v_fpxAV1CaseStart = 1 " Variable to hold DropTarget Bank
starting value
" Handles the Memory feature for Target Score (common pin setting)

2271251

fpxEngine

' Set to one if you want the player(s) Target Bank made total per game in play
carried over to his next ball in play.
' Set to 0 to have the Target Bank Made total per game in play reset back to
beginning with each new ball,
"as set by v_fpxAV1CaseStart above.
v_fpxAV1Memory=1 ' Variable to hold Target Bank Score
Value from ball to Ball (for each player) ' 0=Bally(no light on
before hit) 1=Williams (light is blinking before hit)
T k%% SCOI’Ing *k*k
" Allows you to set the scoring. Everything else is done for you within the engine.
You can add/change anything you want
" like a multiplier or turning on Inlane lights etc. See Beginners Guide in manual
Sub AddVaultScorefpxAV1()
If v_fpxAV10On=1 THEN
Select Case v_fpxAV1Case
Case 0
AddScore(500):AddJackpot(500)
Casel
AddScore(1000):AddJackpot(1000)
Case 2
AddScore(2000):AddJackpot(2000)
Case 3
AddScore(4000):AddJackpot(4000)
Case 4
AddScore(6000):AddJackpot(6000)
Case 5
AddScore(8000):AddJackpot(8000)
Case 6
AddScore(10000):AddJackpot(10000)
Case 7
AddScoringEvent "Special” ' Adds a credit (free game)
Case 8
AddScore(10000):AddJackpot(10000)
End Select
End If
End Sub
' Star Rollover trigger advances lit value
Sub TriggerAV1fpx1_Hit()
PlaySound "trigger"
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
IF v_fpxAV10n=1 THEN AddVaultAV1fpx():END IF ' Only if this
feature is set to "1" and nothing else
' The star is switched off at every new ball, so we set it to on when ball rolls over,
and then it will score a bonus every time till loss of ball

IF LightAV1fpx9.State=BulbOn THEN "look to see if light is already
on
AddBonus (1) " Add Bonus to bonus count
ELSE ' Light not on
LightAV1fpx9.State=BulbOn 'S0 turn it on
END IF

set LastSwitchHit = TriggerAV1fpx1

2281251

fpxEngine

End Sub

" Additional Target scores points, lits TriggerAV1fpx1 for bonus
Sub TargetAV1fpx1_Hit()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
If v_fpxAV10On=1 THEN " Only if this feature is set to "1" and

nothing else
IF LightAV1fpx8.State=BulbOff THEN
AddScore(5000):AddJackpot(5000):AddMusicSet "trigger"
ELSE
AddScore(1000):AddJackpot(1000):AddBonus (1):AddMusicSet "inlaneislit”
END IF
LightAV1fpx8.State=BulbOn
END IF
set LastSwitchHit = TargetAV1fpx1
End Sub
" Rubber hits. You can use AddAlternatingLanes if you want.
Sub RubberAV1fpx1_Hit()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
If v_fpxAV10On=1 THEN

AddScore (10)
AddScoringEvent "AddAlternatingLanes" ' Alternate Inlane/outlanes if
enabled
LightsRoutineAV1fpxGroupl() " routine to flash lights/bulbs
AddMusicSet "sling”
END IF
set LastSwitchHit = TargetAV1fpx1
End Sub

" with this vault, everything is divided to 4 groups. There's no rubbers in group 2
Sub RubberAV1fpx3_Hit()

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF

If v_fpxAV10On=1 THEN

AddScore (10)

LightsRoutineAV1fpxGroup3() ' routine to flash lights/bulbs
AddMusicSet "sling"

END IF

set LastSwitchHit = RubberAV1fpx3

End Sub

"KEEP THIS SET TO 1.
" Turns on or off this vault item.If set to 0 then this code is disabled.
' Set to 1 to use this vault item complete with code and objects
v_fpxAV10n=1
" JEND fpxVaultAV1

VaultAV1fpxDebug=0
Dim

v_fpxAV10n
,v_fpxAV1CaseStart
,vV_fpxAV1Memory
,v_fpxAV1Case

229/251

fpxEngine

,v_fpxAV1Lights

(
9

9),v_fpxAV1LightCount
v_fpxAV1CaseEnd,v_fpxAV1CaseRepeat,VaultAV1fpxDebug
Dim
v_fpxAV1Bulbs
(
9

,10),v_fpxAV1BulbGrouplCount

,v_fpxAV1BulbGroup2Count
V_fpxAV1BulbGroup3Count,v_fpxAV1BulbGroup4Count

Dim m_fpxAV1pl,m_fpxAV1ip2,m_fpxAV1p3,m_fpxAV1p4

If v_fpxAV10On=1 THEN

Set v_fpxAV1Lights(1,1)=LightAV1fpx1l:Set v_fpxAV1Lights(1,2)
=LightAV1fpx2:Set v_fpxAV1Lights(1,3)=LightAV1fpx3:Set v_fpxAV1Lights(1,4)
=LightAV1fpx4

Setv_fpxAV1Lights(1,5)=LightAV1fpx5:Set v_fpxAV1Lights(1,6)
=LightAV1fpx6:Set v_fpxAV1Lights(1,7)=LightAV1fpx7:Set v_fpxAV1Lights(1,8)
=LightAV1fpx8:Set v_fpxAV1Lights(1,9)=LightAV1fpx9

Set v_fpxAV1Bulbs(1,1)=BulbAV1fpx1:Set v_fpxAV1Bulbs(1,2)
=BulbAV1fpx2::Set v_fpxAV1Bulbs(1,3)=PlasticAV1fpx1

Set v_fpxAV1Bulbs(2,1)=BulbAV1fpx3:Set v_fpxAV1Bulbs(2,2)=PlasticAV1fpx2
Set v_fpxAV1Bulbs(3,1)=BulbAV1fpx4:Set v_fpxAV1Bulbs(3,2)
=BulbAV1fpx5:Set v_fpxAV1Bulbs(3,3)=PlasticAV1fpx3
Setv_fpxAV1Bulbs(4,1)=BulbAV1fpx6:Set v_fpxAV1Bulbs(4,2)
=BulbAV1fpx7:Set v_fpxAV1Bulbs(4,3)=PlasticAV1fpx4

End If

' BAM bulb

BulbAV1fpx1EXT
.Brightness=(fpxBulbBrightness):BulbAV1fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbAV1fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbAV1fpx2EXT
.Brightness=(fpxBulbBrightness):BulbAV1fpx2EXT
.GlowRadius=(fpxBulbGlowRadius):BulbAV1fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbAV1fpx3EXT
.Brightness=(fpxBulbBrightness):BulbAV1fpx3EXT
.GlowRadius=(fpxBulbGlowRadius):BulbAV1fpx3EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbAV1fpx4EXT
.Brightness=(fpxBulbBrightness):BulbAV1fpx4EXT
.GlowRadius=(fpxBulbGlowRadius):BulbAV1fpx4EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbAV1fpx5EXT
.Brightness=(fpxBulbBrightness):BulbAV1fpx5EXT
.GlowRadius=(fpxBulbGlowRadius):BulbAV1fpx5EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbAV1fpx6EXT
.Brightness=(fpxBulbBrightness):BulbAV1fpx6EXT
.GlowRadius=(fpxBulbGlowRadius):BulbAV1fpx6 EXT

230/251

.GlowBrightness=(fpxBulbGlowBrightness)
BulbAV1fpx7EXT
.Brightness=(fpxBulbBrightness):BulbAV1fpx7EXT
.GlowRadius=(fpxBulbGlowRadius):BulbAV1fpx7EXT
.GlowBrightness=(fpxBulbGlowBrightness)
PlasticAV1fpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticAV1fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticAV1fpx1EXT
.GlowBrightness=(fpxPlasticGlowBrightness)
PlasticAV1fpx2EXT
.Brightness=(fpxPlasticBrightness):PlasticAV1fpx2EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticAV1fpx2EXT
.GlowBrightness=(fpxPlasticGlowBrightness)
PlasticAV1fpx3EXT
.Brightness=(fpxPlasticBrightness):PlasticAV1fpx3EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticAV1fpx3EXT
.GlowBrightness=(fpxPlasticGlowBrightness)
PlasticAV1fpx4EXT
.Brightness=(fpxPlasticBrightness):PlasticAV1fpx4EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticAV1fpx4EXT
.GlowBrightness=(fpxPlasticGlowBrightness)

"light lens

LightAV1fpx1EXT
.Brightness=(fpxLensBrightness):LightAV1fpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx1EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx2EXT
.Brightness=(fpxLensBrightness):LightAV1fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx3EXT
.Brightness=(fpxLensBrightness):LightAV1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx4EXT
.Brightness=(fpxLensBrightness):LightAV1fpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx5EXT
.Brightness=(fpxLensBrightness):LightAV1fpx5EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx5EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx6EXT
.Brightness=(fpxLensBrightness):LightAV1fpx6EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx6EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx7EXT
.Brightness=(fpxLensBrightness):LightAV1fpx7EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx7EXT
.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx8EXT
.Brightness=(fpxLensBrightness):LightAV1fpx8EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx8EXT

fpxEngine

.GlowBrightness=(fpxLensGlowBrightness)
LightAV1fpx9EXT
.Brightness=(fpxLensBrightness):LightAV1fpx9EXT
.GlowRadius=(fpxLensGlowRadius):LightAV1fpx9EXT
.GlowBrightness=(fpxLensGlowBrightness)

v_fpxAV1LightCount =9 " Number of Lens Lights used (in
set code) in FOR NEXT loops
v_fpxAV1BulbGrouplCount = 3 " Number of bulbs used (in

set code) in FOR NEXT loops
v_fpxAV1BulbGroup2Count = 2
v_fpxAV1BulbGroup3Count = 3
v_fpxAV1BulbGroup4Count = 3
v_fpxAV1CaseEnd=8
v_fpxAV1CaseRepeat=8
' Main scoring routine. On target bank, v_fpxAV1Case increases by one, then
runs that number in the matching case
Sub AddVaultAV1fpx()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
' See if in tilt state or no game in progress to exit the subroutine and stop
any scoring
If v_fpxAV10On=1 THEN ' Check if vault item is
being used
FOR x =1 To (v_fpxAV1LightCount):v_fpxAV1Lights(1,x).State=BulbOff:NEXT
" All lens lights off first

TimerCloseScoringEventCase = 1:LockDisplay=0
Points to the closing routines after the timers are done

AddMusicSet "guidetrigger” ' Music set. Needed for timer
intervals. Overwritten by AddScoringEvent routines

LightsRoutineAV1fpxGroupl():LightsRoutineAV1fpxGroup2():LightsRoutineAV1

fpxGroup3():LightsRoutineAV 1fpxGroup4() ' Flash bulbs. This uses the
timer interval in AddMusicScore and resets to on afterwards
'‘AddVaultScorefpxAV1() ' Goto scoring code as

set by developer
Select Case v_fpxAV1Case
Case0 " Start. No lens assigned
Casel " 1st light lens
DisplayBlinkinterval=(FlashForMSBlinkinterval
+40):v_fpxAV1Lights(1,1).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn
Case 2
DisplayBlinkinterval=(FlashForMSBlinkInterval
+30):v_fpxAV1Lights(1,2).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn
Case 3
DisplayBlinkinterval=(FlashForMSBlinkInterval
+20):v_fpxAV1Lights(1,3).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn
Case 4
DisplayBlinkinterval=(FlashForMSBlinkInterval
+10):v_fpxAV1Lights(1,4).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

232/251

fpxEngine

Case 5
DisplayBlinkinterval=(FlashForMSBIlinkinterval):v_fpxAV1Lights
(1,5).FlashForMs (MusicintervalTime), (DisplayBlinkinterval),BulbOn
Case 6
DisplayBlinkinterval=(FlashForMSBIlinkinterval):v_fpxAV1Lights
(1,6).FlashForMs (MusiclntervalTime), (DisplayBlinkinterval),BulbOn
Case7
DisplayBlinkinterval=(FlashForMSBIlinkinterval):v_fpxAV1Lights
(1,7).FlashForMs (MusiclntervalTime), (DisplayBlinkinterval),BulbOn
Case 8
DisplayBlinkinterval=(FlashForMSBIlinkinterval):v_fpxAV1Lights
(1,6).FlashForMs (MusiclntervalTime), (DisplayBlinkinterval),BulbOn
End Select

AddVaultScoreAV1fpx() ' Goto scoring code as set
by user. Must be before increase case code! (geez shiva)
v_fpxAV1Case = v_fpxAV1lCase+1 " Increases value by

1 for select case routines
IF v_fpxAV1Case> v_fpxAV1CaseEnd THEN
v_fpxAV1Case=(v_fpxAV1CaseStart) " Wraps back to CaseStart if over
max CaseEnd
AV1fpxMemorySave() ' Save Case Value to that
players memory
END IF
End Sub
' runs the correct light routine and restores proper light if v_fpxAV1Memory=1
Sub CloseVaultAdvanceValue()
AddDebugText "CloseVaultAdvanceValue() "
If v_fpxAV10On=1 THEN " Only if this feature is set to "1" and
nothing else
FOR x =1 To (v_fpxAV1LightCount-1): v_fpxAV1Lights(1,x).State =
BulbOff:NEXT
BulbRoutineAV1fpxOn()
Select Case v_fpxAV1Case ' Sets next light to display
Case 0: Exit Sub
Case 1:v_fpxAV1Lights(1,1).State = BulbOn:v_fpxAV1Lights(1,1).FlashForMs
(MusicintervalTime/2), (FlashForMSBlinkinterval),BulbOn ' 1k, light 10k light for
next case
Case 2:v_fpxAV1Lights(1,2).State = BulbOn:v_fpxAV1Lights(1,2).FlashForMs
(MusicintervalTime/2), (FlashForMSBlinkinterval),BulbOn ' 10
Case 3:v_fpxAVl1Lights(1,3).State = BulbOn:v_fpxAV1Lights(1,3).FlashForMs
(MusicintervalTime/2), (FlashForMSBlinkinterval),BulbOn ' 20
Case 4:v_fpxAV1Lights(1,4).State = BulbOn:v_fpxAV1Lights(1,4).FlashForMs
(MusicintervalTime/2), (FlashForMSBlinkinterval),BulbOn ' 30
Case 5:v_fpxAVl1Lights(1,5).State = BulbOn:v_fpxAV1Lights(1,5).FlashForMs
(MusicintervalTime/2), (FlashForMSBlinkinterval),BulbOn ' 40
Case 6:v_fpxAV1Lights(1,6).State = BulbOn:v_fpxAV1Lights(1,6).FlashForMs
(MusicintervalTime/2), (FlashForMSBlinkInterval),BulbOn ' 50
Case 7:v_fpxAVl1Lights(1,7).State = BulbOn:v_fpxAV1Lights(1,7).FlashForMs
(MusiclIntervalTime/2), (FlashForMSBlinkinterval),BulbOn ' E
END SELECT
END IF

233/251

fpxEngine

End Sub
' Main bank scoring routine
Sub AV1fpxLightControl()
If v_fpxAV10On=1 THEN
" disabled. Not used
END IF
End Sub
" Light/Bulb/Plastic routines for a rubber hit
" Groupl top with Star Rollover light
Sub LightsRoutineAV1fpxGroupl()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
If v_fpxAV10On=1 THEN
FOR x=1To (v_fpxAV1BulbGrouplCount):v_fpxAV1Bulbs(1,x).FlashForMs
(MusicintervalTime), (FlashForMSBlinkinterval), BulbOn:NEXT
LightAV1fpx9.FlashForMs (MusicintervalTime), (FlashForMSBlinkinterval),
BulbOn
END IF
End Sub
" Group?2 with target light
Sub LightsRoutineAV 1fpxGroup2()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
If v_fpxAV10On=1 THEN
FOR x =1 To (v_fpxAV1BulbGroup2Count):v_fpxAV1Bulbs(2,x).FlashForMs
(MusicintervalTime), (FlashForMSBlinkinterval), BulobOn:NEXT
LightAV1fpx9.FlashForMs (MusicintervalTime), (FlashForMSBIlinkinterval),
BulbOn
END IF
End Sub
" Group3 side
Sub LightsRoutineAV1fpxGroup3()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
If v_fpxAV10On=1 THEN
FOR x =1 To (v_fpxAV1BulbGroup3Count):v_fpxAV1Bulbs(3,x).FlashForMs
(MusicintervalTime), (FlashForMSBlinkinterval), BulbOn:NEXT
END IF
End Sub
" Group4 bottom
Sub LightsRoutineAV1fpxGroup4()
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF
If v_fpxAV10On=1 THEN
FOR x =1 To (v_fpxAV1BulbGroup4Count):v_fpxAV1Bulbs(4,x).FlashForMs
(MusicintervalTime), (FlashForMSBlinkinterval), BulbOn:NEXT
END IF
End Sub
Sub BulbRoutineAV1fpxOn()
FORx=1To
(v_fpxAV1BulbGrouplCount):v_fpxAV1Bulbs(1,x).State=BulbOn:NEXT
FORx=1To
(v_fpxAV1BulbGroup2Count):v_fpxAV1Bulbs(2,x).State=BulbOn:NEXT
FORx=1To
(v_fpxAV1BulbGroup3Count):v_fpxAV1Bulbs(3,x).State=BulbOn:NEXT
FORx=1To

234/251

fpxEngine

(v_fpxAV1BulbGroup4Count):v_fpxAV1Bulbs(4,x).State=BulbOn:NEXT

End Sub

' Start Game Routine

Sub AV1fpxGameReset()

IFv_fpxAV10On=1 THEN ' Check if vault item is being used
IF VaultAV1fpxDebug=1 THEN AddDebugText "AV1fpxGameReset()"

' Dev Debug Code
FOR x =1 To (v_fpxAV1LightCount): v_fpxAV1Lights(1,x).State = BulbOff:NEXT
"We turn off all the Bulb lights first before we update the scoring

v_fpxAV1Case=(v_fpxAV1CaseStart) ' Resets scoring case

setting back to starting default (set in vault user options)
m_fpxAV1pl=(v_fpxAV1CaseStart):m_fpxAV1p2=(v_fpxAV1CaseStart)

Resets variables back to initial starting point
m_fpxAV1p3=(v_fpxAV1CaseStart):m_fpxAV1p4d=(v_fpxAV1CaseStart)

END IF

End Sub

" Run from NewBall(). Also used as a blanket reset called from tilt, startup and
game over subroutines.
Sub AV1lfpxBallReset()
IFv_fpxAV10On=1 THEN ' Check if vault item is being used
IF VaultAV1fpxDebug=1 THEN AddDebugText "AV1fpxBallReset()"
' Dev Debug Code
If v_fpxAV1Memory=1 Then " Look to see if player
memory feature is on if it is then...
AV1lfpxMemoryLoad() 'Load in last
v_fpxAV1CaseStart made from loss of previous ball
ELSE " or if player memory feature is off
FOR x =1 To (v_fpxAV1LightCount): v_fpxAV1Lights(1,x).State = BulbOff:NEXT
"We turn off all the lights first before we update the scoring

BulbRoutineAV1fpxOn() " We turn on all the Bulb lights first before we
update the scoring

IFv_fpxAV1CaseStart > 1 THEN v_fpxAV1CaseStart = 1 "error
catcher and prevents people from cheezing

v_fpxAV1Case=(v_fpxAV1CaseStart) ' Reset
v_fpxAV1Case back to the beginning(user selectable top of script)

CloseVaultAV1fpx() " runs the correct light routine and

restores proper light if target bank player memory feature is setto 1

END IF

END IF
End Sub
" Only called from AV1fpxBallReset() but keep here in case future vaults need
this
Sub AV1fpxMemoryLoad()

IFv_fpxAV10On=1 THEN

IF VaultAV1fpxDebug=1 THEN AddDebugText "AV1fpxMemoryLoad()"

' Dev Debug Code

BulbRoutineAV1fpxOn() " PF bulb lights should be on, but lets make
sure
Select Case CurrentPlayer " Now we look at the memory for

the player that is up to see which light should be turned back on

235/251

fpxEngine

Case 1:v_fpxAV1Case=m_fpxAV1pl
Case 2:v_fpxAV1Case=m_fpxAV1p2
Case 3:v_fpxAV1lCase=m_fpxAV1p3
Case 4:v_fpxAV1Case=m_fpxAV1p4

End Select

IF v_fpxAV1Case> v_fpxAV1CaseEnd THEN
v_fpxAV1Case=(v_fpxAV1CaseStart) " Wraps back to caseStart if over
max CaseEnd

Select Case v_fpxAV1Case ' Restore the proper light the

extra snazzy way

Case 0: FOR x =1 To (v_fpxAV1LightCount):v_fpxAV1Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxAV1Blinkintervals/4),BulbOn:NEXT

Case 1:FOR x =1 To (v_fpxAV1lLightCount):v_fpxAV1Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxAV1Blinkintervals/4),BulbOn:NEXT

Case 2 : FOR x =1 To (v_fpxAV1LightCount):v_fpxAV1Lights(1,x).FlashForMs
(MusicintervalTime/2), (v_fpxAV1Blinkintervals/4),BulbOn:NEXT

Case Else:FORx=1To
(v_fpxAV1LightCount):v_fpxAV1Lights(1,x).FlashForMs (MusiclntervalTime/2),
(v_fpxAV1Blinkintervals/4),BulbOn:NEXT

End Select

IF VaultAV1fpxDebug=1 AND v_fpxAV10On=1 THEN ' Dev
Debug Code

AddDebugText " - m_fpxAV1pl = " & (m_fpxAV1pl):AddDebugText " -
m_fpxAV1p2 = " & (m_fpxAV1p2):AddDebugText " - m_fpxAV1p3 = " &
(m_fpxAV1p3):AddDebugText " - m_fpxAVip4 = " & (m_fpxAV1p4)

END IF
END IF
End Sub
"' Only called from AddVaultAV1fpx() but keep here in case future vaults need
this
Sub AV1fpxMemorySave()

IF v_fpxAV1On=1 THEN " Check if vault item is being used

IF VaultAV1fpxDebug=1 THEN AddDebugText "AV1fpxMemorySave()"

' Dev Debug Code

Select Case CurrentPlayer ' we see which player is
playing.

Case 1:m_fpxAV1pl=v_fpxAV1Case

Case 2:m_fpxAV1p2=v_fpxAV1Case

Case 3:m_fpxAV1p3=v_fpxAV1iCase

Case 4:m_fpxAV1lp4=v_fpxAV1Case

End Select

END IF
End Sub
" [END fpx Vault Target(3)Bank1

U kkkkhkkkkhkkkhkhkkkkhkkkkkhkkx

fo Vault *x

I kkkkkkkkkkkhkkkkhkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkkkkkkx

' *** These subroutines are Master subroutines and are used by all Vault items

*kk

"Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine code

236/251

fpxEngine

Sub VaultBallReset()

' Standup Targets

IF v_fpxAV10n=1 THEN AV1fpxBallReset() : END IF

v_fpxAV10n

End Sub

' Game Start. This resets the variables. This is used by all Vault items and
called directly in the main engine code

Sub VaultGameReset()

' StandupTargets

IF v_fpxAV10n=1 THEN AV1lfpxGameReset():END IF

End Sub

' Closes ScoringEvent code pointed to by background timer for additional
instructions. This is used by all Vault items and called directly in the main
engine code

' TimerCloseScoringEventCase is the control variable

Sub TimerCloseScoringEvent_Expired() ' Restore the
scoring display

End Sub

' Saves the v_fpxAVCase settings for each player at the loss of a ball
(Selectable by user). This is used by all Vault items and called directly in the
main engine code

Sub VaultAVMemorySave()

' StandupTargets

IF v_fpxAV10n=1 THEN AV1fpxMemorySave()

End Sub

' Loads the v_fpx "Case" settings for each player at the start of a ball, and
restores that value back on his next ball if Memory=1.

' This is used by all Vault items and called directly in the main engine code
Sub VaultAVMemoryLoad()

' StandupTargets

IF v_fpxAV10n=1 THEN AV1fpxMemoryLoad():END IF

end sub

Full-featured multi-format Help
generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Full-featured Documentation generator
Vault - Kickers
Full-featured Documentation generator

vault_fpxKickerl

Vault - Triggers Targets - fpxTAV1
< @ w»

@ Vault - Kickers - fpxKickerl

2371251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com
https://www.helpndoc.com

0 How to use this Vault Item in the fpxEngine

Using this Vault item and including it in your table design is very simple. It's just a
couple copy and pastes from one fpt file to another!
Don't know How? Just click here.

vault_fpxTarget3Bank1

£ How it works

This Vault item has a
Advancing Value system,
which is set to increase a
set value every time the ball
rolls over the top trigger.
There are also code for the
two rubbers, as well as a
Target that when hit will light
up that target for a bonus
that is added to the bonus
countdown at the loss of a
ball.

Q User adjustments

(pinsettings)
v_fpxKickerlMemory=1
- Handles the Memory
feature for the Kicker
scoring (common pin
setting)
- Set to one if you want the
player(s) made total per
game in play carried over
to his next ball in play.
- Setto 0 to have the
Kicker total per game in
play reset back to
beginning with each new
ball,
v_fpxKickerlCaseStart =
1
- Initial light to be lit in this
vault item for start of each
ball
- Set to O for no lights at
start or "hard". (You need
to complete the routine

once before the first light
will be lit)

- Set to 1 to have the first
light on at the start of a
game

& How to Change Scoring (Bank)

Sub AddVaultScorefpxAV1()

This subroutine handles scoring when the Kicker is made. you can modify each
stage by modifying the code with each case setting by adding different values
between the brackets for higher scores, or by adding or replacing the code for
additional or replacement fpxEngine AddScoringEvents routines. In most cases
with AddScoringEvent, these are just 1 or 2 lines of code you can copy and paste.
- Case 0: 5000 points,1000 added to Jackpot value

- Case 1: 10000 points,10000 added to Jackpot value

- Case 2: 25000 points

- Case 3: Extra Ball

- Case 4: Special

- Case 5: 25,000 points

© How to Change scoring (Target Objects)

Sub TargetAV1fpx1 Hit()

This subroutine handles scoring when the Kicker is made. There are 5 stages,
with the final stage (case 5 in this example) repeating till the player loses the ball.
The scoring will then reset back to the beginning if v_fpxKickerlMemory is set to
"0". If v_fpxKickerlMemory is set to "1", the player will be able to continue where
he last left off, but note that this does not allow him to repeat the previous stages.
You can modify these stages by modifying the code by adding different values
between the brackets for higher scores, or by adding or replacing the code for
additional or replacement fpxEngine AddScoringEvents routines. In most cases
with AddScoringEvent, these are just 1 or 2 lines of code you can copy and paste.

C 'Kicker . You need to set a scoring value here for a single drop target hit
0 that doesn't complete a bank
d Sub Kickerlfpx1_Hit()
€ 'IF VaultDebug=1 THEN AddDebugText "Kickerl_Hit() "
' Play the mechanical sound. this will sound even if game is tilted
Playsound "kicker"
IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN
TimerKickerlfpx1.Set True, 200:Exit Sub : END IF "See ifintilt
state or no game in progress to kick ball back out, exit the subroutine
and stop any scoring " Adds one bonus within the
brackets to the End-Of-Ball Bonus Countdown routine
If v_fpxKickerlOn=1 THEN AddVaultKickerlfpx() : END IF
"if all targets in this bank are down, go to bank made scoring
subroutine
set LastSwitchHit = Kickerlfpx1 ' FP code we can

use if needed. Just good programing
End Sub

£ List of Objects
These objects are needed for the entire script to work. If you accidentally delete one of

these objects and then run the table, the table will throw up a error message telling you a
object is missing. If you restore that object back, your table will run fine.
This is a list of all the objects needed:

Lights

LightKickerlfpx1
LightKicker1fpx2
LightKicker1fpx3
LightKicker1fpx4

Bulbs and Plastics
BulbKickerlfpx1
BulbKickerlfpx2
PlasticKickerlfpx1

Objects

Kickerlfpxl
TimerKickerlfpx1
t fpxDropTarget3Bankl
© Additional Information

e All Kicker vault items objects are set to Layer 3 in your editor. Each major group of
Vault items are set to their own layer for easy moving and modification.

e Layer 9 are reserved for the top (header) and Bottom (slingshots/flippers/aprons)
Layer O is reserved for the fpxEngine objects.

e All objects can be modified or rotated to fit your design. Consult the FP manual for

making changes directly in the editor, or visit the_Pinball Nirvana website if you get
really stuck.

3

A Note

fpxEngine uses a shaped light as a "plastic”, as well as a semi-transparent surface
as a edge around it. This is set to a height of 32mm, to form a proper cover over
posts/rubbers etc that the ball can roll underneath. The Plastic light is part of the bulb
code, it will flash in unison with the bulbs underneath, and can not be deleted without
causing a error message when you run the table. Plastics always have the word in
front of the file name. Semi-transparent edges (surfaces) always has the "t_ in front
of the name, and are not part of the script, so you can safely delete these objects.

© vault Worksheet

The very nature of the fpxEngine is to allow absolute beginners to build and create
complex tables with as little actual experience as possible, but you still need to learn a
tiny bit of coding sometimes. Most of the Vault items will be based on the actual arcade
table it came from, so it's just a quick copy and paste the design elements, the code,
and then adding lights in the LightList manager.

More advanced coders though may wish to duplicate or modify this code to run different
routines. This Vault item worksheet is the master template | use to create vault items
from, so if you decide to duplicate or modify this vault item, you can change it easily
using this worksheet. For more information, check the Using the Vault Worksheets

page.

https://pinballnirvana.com/forums/

fpxEngine

co ' * Find and replace code keywords for duplication or new vault items
de 'replacement table vault name keyword: fpx

' replacement object keyword: Kickerl

' Remark Keyword: DropTargetBank1l

' Coding Names Keywords

"v_ variables keyword

"m_ memory keyword

' * List of variables

" VaultKickerlfpxDebug

"v_fpxKickerlOn

'v_fpxKickerlCaseStart

" v_fpxKickerlCaseEnd

" v_fpxKickerlMemory

' v_fpxKickerlCase

'v_fpxKickerlLights(9,9) ' For/Next Loops

'v_fpxKickerlBulbs(9,9) ' For/Next Loops

'v_fpxKickerlLightCount ' Amount Lights in v_fpxKickerlLights

'v_fpxKickerlBulbCount ' Amount Bulbs in v_fpxKicker1Bulbs

"' m_fpxKickerlpl

"' m_fpxKickerlp2

"' m_fpxKickerlp3

"' m_fpxKickerlp4

' * Subroutines

" AddVaultKicker1fpx() " Main vault routine

' CloseVaultKickerlfpx() ' Light control

' KickerlfpxGameReset() "New game

' KickerlfpxBallReset() ' New ball in play

' KickerlfpxMemorySave() ' saves players progress

' KickerlfpxMemoryLoad() ' Restores players progress

" AddVaultScoreKickerlfpx

' fpxKickerl

" * Unique subroutines to this vault
' TimerKickerlfpx1l Expired() ' Timer
'* Lights

" LightKickerlfpx1

" LightKickerlfpx2

' LightKicker1fpx3

" LightKickerlfpx4

' * Bulbs

" BulbKickerlfpx1

' BulbKickerl1fpx2

' PlasticKickerlfpx1

' * Objects

" Kickerlfpx1l

" TimerKickerlfpx1

"t fpxDropTarget3Bankl

' * fpx Vault Kickerlfpx *

241/251

fpxEngine

' For the fpxEngine.
" 1. Make sure all layers in the FP editor are "visible".
' Copy all the table elements in the editor from this fpt and then paste these
elements into your fpxEngine table.
' 2. Set User adjustments below to suit, then copy this entire script from this fpt
and paste into the script for your fpx table.
" I recommend pasting in the HIT SECTION.
' 3. Add Lights,plastics and bulbs to your LightList Manager in your fpx table.
' - Look for the names listed on the left side in the LightList Manager to have
"light", "bulb" or "plastic" as fpx will use these words
" at the beginning of the object name for all Vault Items
" - If you do not know how to transfere the lights, both the fpx manual (in the
vault pages) and the Future Pinball manual explains how to do this.
"4. Press "play"!
'* User adjustments *
"Initial light to be lit in this vault item for start of each ball, set to O for no lights at
start or "hard".
" (You need to complete the routine once before the first light will be lit)
' Set to 1 to have the first light on at the start of a game

v_fpxKickerlCaseStart = 1 "Variable to hold DropTarget
Bank starting value
' Handles the Memory feature for DropTarget Score (common pin setting)
' Set to one if you want the player(s) DropTarget Bank made total per game in
play carried over to his next ball in play.
' Set to 0 to have the DropTarget Bank Made total per game in play reset back
to beginning with each new ball,
"as set by v_fpxKickerlCaseStart above.

v_fpxKickerlMemory=1 " Variable to hold DropTarget
Bank Score Value from ball to Ball (for each player)
T k%% SCOI‘Ing *k*
" Allows you to set the scoring. Everything else is done for you within the engine.
You can add/change anything you want in here
" like adding a multiplier or turning on Inlane lights etc. See Beginners Guide in
manual
Sub AddVaultScoreKicker1fpx1()

'IF VaultDebug=1 THEN AddDebugText "AddVaultScoreKickerlfpx1() "

' Dev Debug Code
If v_fpxKickerlOn=1 THEN
Select Case v_fpxKickerlCase

Case 0 " This is used as the starting TargetBank score
if v_fpxKickerlCaseStart = 0.

AddScore(5000) " Adds the value within the brackets to
your player(s) score

AddJackpot(1000) ' Adds the value within the brackets to
the Jackpot value which can be collected later on in the game

AddBonus(1) ' Adds one bonus within the brackets to the
End-Of-Ball Bonus Countdown routine

Case l ' This is used as the starting TargetBank score
if v_fpxKickerlCaseStart = 1.

AddScore(10000)

242251

fpxEngine

AddJackpot(10000)

AddBonus(1)

Case 2

AddScoringEvent "25kAward"

Case 3

AddScoringEvent "ExtraBall" " Adds a Extra Ball

Case 4

AddScoringEvent "Special” " Adds a credit (free game)

Case Else ' Case else will score if case is higher than 5,
and will keep repeating

AddScoringEvent "25kAward"

End Select

End If
End Sub
" Kicker . You need to set a scoring value here for a single drop target hit that
doesn't complete a bank
Sub Kickerlfpx1_Hit()

'IF VaultDebug=1 THEN AddDebugText "Kickerl_Hit() " 'Play
the mechanical sound. this will sound even if game is tilted

Playsound "kicker"

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN TimerKickerlfpx1.Set True,
200:Exit Sub : END IF ' See if in tilt state or no game in progress to
kick ball back out, exit the subroutine and stop any scoring

" Adds one bonus within the brackets to the End-Of-Ball Bonus Countdown
routine

If v_fpxKickerlOn=1 THEN AddVaultKickerlfpx() : END IF "if
all targets in this bank are down, go to bank made scoring subroutine
set LastSwitchHit = Kickerl1fpx1 ' FP code we can use if
needed. Just good programing
End Sub
" Engine code, do not change or modify. This is needed by the engine to
reconize this vault item. Changing this will cause errors.
v_fpxKickerlOn=1 " KEEP THIS SET TO 1.

" /[END fpx Vault Kickerlfpx
' Placed in main fpx Vault Routines ******

Const VaultKickerlfpxDebug=1 ' Dev Debug. Setto 1to
generate debug text for this vault item
Dim
v_fpxKickerlOn
,V_fpxKickerlMemory
,v_fpxKickerlLights
(9,9),v_fpxKicker1Bulbs(9,9),v_fpxKickerlLightCount,v_fpxKickerlBulbCount
' Variables
Dim v_fpxKickerlCase,v_fpxKickerlCaseEnd,v_fpxKickerlCaseStart
' Scoring variables
Dim m_fpxKickerlplm_fpxKickerlp2,m_fpxKickerlp3,m_fpxKickerlp4
' Player(s) memory
If v_fpxKickerlOn=1 THEN ' Checks if vault item is being

2431251

fpxEngine

used

Set v_fpxKickerlLights(1,1)=LightKickerlfpxl:Set v_fpxKickerlLights(1,2)
=LightKickerlfpx2:Set v_fpxKickerlLights(1,3)=LightKickerlfpx3:Set
v_fpxKickerlLights(1,4)=LightKickerlfpx4

Set v_fpxKickerlBulbs(1,1)=BulbKickerlfpx1l:Set v_fpxKickerlBulbs(1,2)
=BulbKickerlfpx2:Set v_fpxKickerl1Bulbs(1,3)=PlasticKickerlfpxl ' Bulb
and Plastics

' BAM bulb

BulbKickerlfpx1EXT
.Brightness=(fpxBulbBrightness):BulbKicker1fpx1EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx1EXT
.GlowBrightness=(fpxBulbGlowBrightness)

BulbKickerlfpx2EXT
.Brightness=(fpxBulbBrightness):BulbKickerl1fpx2EXT
.GlowRadius=(fpxBulbGlowRadius):BulbKicker1fpx2EXT
.GlowBrightness=(fpxBulbGlowBrightness)

PlasticKickerlfpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticKicker1fpx1IEXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticKickerlfpx1IEXT
.GlowBrightness=(fpxPlasticGlowBrightness)

"light lens

LightKickerlfpx1EXT
.Brightness=(fpxLensBrightness):LightKicker1lfpx1EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx LEXT
.GlowBrightness=(fpxLensGlowBrightness)

LightKicker1fpx2EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx2EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx2EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightKicker1fpx3EXT
.Brightness=(fpxLensBrightness):LightKicker1fpx3EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx3EXT
.GlowBrightness=(fpxLensGlowBrightness)

LightKicker1fpx4EXT
.Brightness=(fpxLensBrightness):LightKicker1lfpx4EXT
.GlowRadius=(fpxLensGlowRadius):LightKickerlfpx4EXT
.GlowBrightness=(fpxLensGlowBrightness)

PlasticKickerlfpx1EXT
.Brightness=(fpxPlasticBrightness):PlasticKicker1fpx1EXT
.GlowRadius=(fpxPlasticGlowRadius):PlasticKicker1fpx1IEXT
.GlowBrightness=(fpxPlasticGlowBrightness)

v_fpxKickerlLightCount = 4 " Number of Lens Lights used
(in set code) in FOR NEXT loops

v_fpxKickerlBulbCount = 3 " Number of bulbs used (in
set code) in FOR NEXT loops

v_fpxKickerlCaseEnd=5 ' Last case number for scoring,
used to reset case to beginning if over at next ball

End If

" Main scoring routine. On target bank, v_fpxKickerlCase scores then
increases by one

Sub AddVaultKicker1fpx()

IF (fpTilted = TRUE) OR (GamelnProgress=0) THEN Exit Sub:END IF

244251

fpxEngine

' See if in tilt state or no game in progress to exit the subroutine and stop
any scoring
If v_fpxKickerlOn=1 THEN ' Check if vault item
is being used
IF VaultKickerlfpxDebug=1 THEN AddDebugText "AddVaultKickerlfpx()"
' Dev Debug Code
FORx=1To
(v_fpxKickerlLightCount):v_fpxKickerlLights(1,x).State=BulbOff:NEXT
" All lens lights off first
LockDisplay=0 ' Clears any music priorty code
DisplayBlinkInterval=(FlashForMSBIlinkInterval+40) ' Sets new
interval for DT lights
FOR x =1 TO v_fpxKicker1BulbCount:v_fpxKicker1Bulbs(1,x).FlashForMs

(MusicintervalTime), (FlashForMSBlinkinterval), BulbOn:NEXT ' Bulbs
behind object will Blink rapidly for time set
AddMusicSet "kicker" " Note. Default music is overwritten

by any AddScoringEvent code, so you need this default in case there is no
special scoring feature
Select Case v_fpxKickerlCase

Case0: 'v_fpx CaseStart = 0. no light lens till next
case

Casel: "v_fpx CaseStart = 1. first light lens used

Case 2 : v_fpxKickerlLights(1,2).FlashForMs (MusiclntervalTime),
(DisplayBlinkinterval),BulbOn " Second Light lens used

Case 3 : FlushDisplay() ' Have to add flushdisplay here

before extra ball/special/jackpot routines

Case 4 : FlushDisplay() : v_fpxKickerlLights(1,2).FlashForMs
(MusicintervalTime), (DisplayBlinkinterval),BulbOn " Last light lens, so turn
back on LightLens 2 to keep repeating till loss of ball

Case 5 : v_fpxKickerlLights(1,2).FlashForMs (MusiclntervalTime),

(DisplayBlinkinterval),BulbOn " After last case, this just keeps
repeating for the ball in play till ball lost

End Select

AddVaultScoreKickerlfpx1() " Goto scoring

code as set by developer. Must be before increase case code! (geez shlva)

v_fpxKickerlCase = v_fpxKickerlCase+1
Increases value by 1 for select case routines

IF v_fpxKickerlCase> v_fpxKickerlCaseEnd THEN
v_fpxKickerlCase=(v_fpxKickerlCaseEnd) " Wraps back to
caseStart if over max CaseEnd

TimerKickerlfpx1.Set True, 1500 " kicks ball (after set
delay time)

KickerlfpxMemorySave() ' Save to that players
memory

CloseVaultKicker1fpx() " Run closing light routine

END IF

End Sub

" Timer to reset target bank after a delay.
Sub TimerKickerlfpx1_Expired()
TimerKickerlfpx1l.Enabled = False

245251

fpxEngine

If v_fpxKickerlOn=1 THEN ' Check if vault item
is being used
IF VaultKickerlfpxDebug=1 THEN AddDebugText

"TimerKickerlfpx1l Expired() " ' Dev Debug Code
Kickerlfpx1l.SolenoidPulse : PlaySound "kicker" ' Resets drop

target bank

END IF

End sub

' runs the correct light routine and restores proper light if
v_fpxKickerlMemory=1
Sub CloseVaultKicker1fpx()
If v_fpxKickerlOn=1 THEN " Only if this feature
is set to "1" and nothing else
IF VaultKickerlfpxDebug=1 THEN AddDebugText "CloseVaultKickerlfpx()
":AddDebugText " ":END IF ' Dev Debug Code
FOR x =1 To (v_fpxKickerlLightCount): v_fpxKickerlLights(1,x).State =
BulbOff:NEXT
Select Case v_fpxKickerlCase ' Sets next light
to display based on Case
Case 0: Exit Sub
Case 1: v_fpxKickerlLights(1,1).State = BulbOn:
v_fpxKickerlLights(1,1).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' 1k, light 10k light for next case
Case 2: v_fpxKickerlLights(1,2).State = BulbOn:
v_fpxKickerlLights(1,2).FlashForMs (MusicintervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' 20k
Case 3: v_fpxKickerlLights(1,3).State = BulbOn:
v_fpxKickerlLights(1,3).FlashForMs (MusicintervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' Extra Ball
Case 4: v_fpxKickerlLights(1,4).State = BulbOn:
v_fpxKickerlLights(1,4).FlashForMs (MusiclntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' Special
Case 5:v_fpxKickerlLights(1,2).State = BulbOn:
v_fpxKickerlLights(1,2).FlashForMs (MusicIntervalTime/2),
(FlashForMSBlinkinterval),BulbOn ' Any thing over
END SELECT
END IF
End Sub
' Game Start. This resets the variables. This is used by all Vault items and
called directly in the main engine code
Sub KickerlfpxGameReset()

IF v_fpxKickerlOn=1 THEN " Check if vault item is being
used

IF VaultKickerlfpxDebug=1 THEN AddDebugText
"KickerlfpxGameReset()":AddDebugText " ":END IF ' Dev Debug
Code

TimerKickerlfpx1.Set True, 20 ' Resets kicker (after set
delay time)

FOR x =1 To (v_fpxKickerlLightCount): v_fpxKickerlLights(1,x).State =
BulbOff:NEXT " We turn off all the lights first before we update the
scoring

246/ 251

fpxEngine

FOR x =1 TO v_fpxKickerlBulbCount:v_fpxKicker1Bulbs(1,x).State =

BulbOn:NEXT "We turn on all the Bulb lights first before we update
the scoring
v_fpxKickerlCase=(v_fpxKickerlCaseStart) ' Resets

scoring case setting back to starting default (set in vault user options)

m_fpxKickerlpl=(v_fpxKickerlCaseStart):m_fpxKickerlp2=(v_fpxKickerlCas
eStart):m_fpxKickerlp3=(v_fpxKickerlCaseStart):m_fpxKickerlp4=(v_fpxKicker
1CaseStart) ' Resets variables back to initial starting point
END IF
End Sub
" Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine code
Sub KickerlfpxBallReset()
IF v_fpxKickerlOn=1 THEN ' Check if vault item is being
used

IF VaultKickerlfpxDebug=1 THEN AddDebugText "CloseVaultKickerlfpx()
":AddDebugText " ":END IF ' Dev Debug Code

If v_fpxKickerlMemory=1 Then ' Look to see if
player memory feature is on if it is then...

KickerlfpxMemoryLoad() "Load in last
v_fpxKickerlCaseStart made from loss of previous ball

ELSE " or if player memory feature is off

FOR x =1 To (v_fpxKickerlLightCount): v_fpxKickerlLights(1,x).State =
BulbOff:NEXT "We turn off all the lights first before we update the
scoring

FOR x =1 TO v_fpxKickerlBulbCount:v_fpxKickerlBulbs(1,x).State =
BulbOn:NEXT "We turn on all the Bulb lights first before we update
the scoring

IF v_fpxKickerlCaseStart > 1 THEN v_fpxKickerlCaseStart = 1
"error catcher and prevents people from cheezing

v_fpxKickerlCase=(v_fpxKickerlCaseStart) ' Reset
v_fpxKickerlCase back to the beginning(user selectable top of script)
CloseVaultKicker1fpx() ' runs the correct light routine and

restores proper light if target bank player memory feature is setto 1
END IF
END IF
End Sub
' Saves the Case settings for each player at the loss of a ball (Selectable by
user). This is used by all Vault items and called directly in the main engine
code
Sub KickerlfpxMemorySave()
IF v_fpxKickerlOn=1 THEN
Select Case CurrentPlayer ' we see which player is
playing.
Case 1:m_fpxKickerlpl=v_fpxKickerlCase
Case 2:m_fpxKickerlp2=v_fpxKickerlCase
Case 3:m_fpxKickerlp3=v_fpxKickerlCase
Case 4:m_fpxKickerlp4=v_fpxKickerlCase
End Select
IF VaultKickerlfpxDebug=1 THEN ' Dev Debug Code
AddDebugText "KickerlfpxMemorySave()":AddDebugText " - fpxKickerlCase

2471251

fpxEngine

= " & (v_fpxKickerlCase):AddDebugText " - fpxKickerlCase = " &
(v_fpxKickerlCase)

AddDebugText " - fpxKickerlCase = " & (v_fpxKickerlCase):AddDebugText "
- fpxKickerlCase = " & (v_fpxKickerlCase)

END IF

END IF
End Sub
' Loads the "Case" settings for each player at the start of a ball, and restores
that value back on his next ball if Memory=1.
' This is used by all Vault items and called directly in the main engine code
Sub KickerlfpxMemoryLoad()

IF v_fpxKickerlOn=1 THEN

FOR x =1 To (v_fpxKickerlLightCount): v_fpxKickerlLights(1,x).State =
BulbOff:NEXT "We need to restore the light memory for each player,
so all lights off

FOR x =1 TO v_fpxKickerlBulbCount:v_fpxKickerl1Bulbs(1,x).State =
BulbOn:NEXT " PF bulb lights should be on, but lets make sure

Select Case CurrentPlayer " Now we look at the memory for
the player that is up to see which light should be turned back on

Case 1:v_fpxKickerlCase=m_fpxKickerlpl

Case 2:v_fpxKickerlCase=m_fpxKickerlp2

Case 3:v_fpxKickerlCase=m_fpxKickerlp3

Case 4:v_fpxKickerlCase=m_fpxKickerlp4

End Select

IF v_fpxKickerlCase=> v_fpxKickerlCaseEnd THEN
v_fpxKickerlCase=v_fpxKickerlCaseStart " Wraps back to caseStart
if over max CaseEnd

Select Case v_fpxKickerlCase ' Restore the proper light
the extra snazzy way

Case 0

Case 1:v_fpxKickerlLights(1,1).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

Case 2:v_fpxKickerlLights(1,2).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

Case 3:v_fpxKickerlLights(1,3).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

Case 4:v_fpxKickerlLights(1,4).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

Case 5:v_fpxKickerlLights(1,2).FlashForMs (MusicintervalTime),
(DisplayBlinkinterval),BulbOn

End Select

IF VaultKickerlfpxDebug=1 THEN ' Dev Debug Code

AddDebugText " - m_fpxKickerlpl = " & (m_fpxKickerlpl):AddDebugText " -
m_fpxKickerlp2 = " & (m_fpxKickerlp2)

AddDebugText " - m_fpxKickerlp3 = " & (m_fpxKickerlp3):AddDebugText " -
m_fpxKickerlpd = " & (m_fpxKickerlp4)

END IF

END IF
End Sub
" /END fpx Vault Kickerlfpx

R R R T e R R e e R R R R R e R R T R R R e R R T R R RS R R R e R R T R R e R R T

L Vault *

248251

fpxEngine

U kkkkkkkkhkkhkhkkkhkkkhkkkkkkkhkkhkhkkkkhkkhkkhkkkkkhkkkkhkkkkhkkkkhkkkkhkkkkkhkkkkkk

' *** These subroutines are Master subroutines and are used by all Vault items
*%k%

' These are for use by the fpxEngine. Any other templates these subroutines
must be linked to within that templates code

"Run at NewBall. Also used as a blanket reset used for tilt, startup or game
over. This is used by all Vault items and called directly in the main engine
code.

' ResetTiltedState(): ResetForNewPlayerBall()

Sub VaultBallReset()

' Kickers

IF v_fpxKickerlOn=1 THEN KickerlfpxBallReset()

End Sub

' This resets the variables for the start of a game. This is used by all Vault items
and called directly in the main engine code

' ResetForNewGame() : EndOfGame()

Sub VaultGameReset()

" Kickers

IF v_fpxKickerlOn=1 THEN KickerlfpxGameReset():END IF

End Sub

' Closes ScoringEvent code pointed to by background timer for additional
instructions.

' TimerCloseScoringEventCase is the control variable

Sub TimerCloseScoringEvent_Expired()

End Sub

' Saves the v_fpxAVCase settings for each player at the loss of a ball
(Selectable by user).

Sub VaultAVMemorySave()

" Kickers

IF v_fpxKickerlOn=1 THEN KickerlfpxMemorySave()

End Sub

Sub VaultAVMemoryLoad()

' Kickers

IF v_fpxKickerlOn=1 THEN KickerlfpxMemoryLoad():END IF
end sub

Full-featured multi-format Help

generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Easy CHM and documentation editor

Plastics and Spare Parts

Easily create PDF Help documents

249/251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com
https://www.helpndoc.com/feature-tour

vault_fpxPlastics1

Vault - Plastics and Spare Parts - Plastic 1

{i? Vault - Plastics and Spare Parts - Plastic 1

0 How to use this Vault Item in the fpxEngine

Using this Vault item and including it in your table design is very simple. It's just a
couple copy and pastes from one fpt file to another!
Don't know How? Just click here.

Plastics

O How it works

This Vault item is a non-scoring table part. Some parts of a pinball table design
require a shaped design to guide the players ball to certain areas of the table.
Because fpx uses a lighting system for the bulbs and the plastics, several premade
parts are included for the designer to use. These can be modified and reshaped
according to the developers needs, and to "fit" his design better. In most cases, all
that is needed is to copy and paste one line of code from the Vault item template
into the main fpxEngine script. There are no settings needed for adjustments.

€ How to Modify

Unlike other Vault items, these are generally used to "fill in" parts of your design,
and can be modified anyway you wish. Most of these parts have very simple
scripting, and usually contain bulb and lights used to shape the plastic in the code.
Everything else within the vault item can be safely deleted if you wish, but it is
recommended you just reshape the other parts, as they are used to set the
"heights” of the plastics, and if you delete the transparent edge surface, the plastic
will drop down to the playfield level and will need to be assigned a new surface
height.

You can also add other parts such as posts or rubbers as you see fit.

The fpxEngine Vault item templates all use the same system for the layout design.

A bulb underneath a light shaped as the plastic. We also use 2 "surfaces" with

each vault item, which is detailed below. Note that every Vault item also has these

2 surfaces.

e The transparent edging around the lighted plastic. This is preset for you and
matches all the other vault items. All plastic trim surfaces have a " t_ " prefix in
front of the surface name (as a example: t_fpxHeadConnectl)

e The plastic ball guide. This is set to 16 height, and is used to guide the ball. All
ball guide surfaces have a " m_ " prefix in front of that surface name (for
example: m_fpxHeadConnectl)

fpxEngine

€ vault_fpxPlastics1
A simple corner piece
suitable for connecting to
the top header portion of
a table.

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help

generator
Copyright © 2019 by P.D.Sanderson. All Rights Reserved.

Created with the Personal Edition of HelpNDoc: Produce electronic books easily

251 /251

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/create-epub-ebooks

	Lets Get Started
	About fpx
	Build History
	What you need first
	Playing the table
	Credits

	Beginner's Guide
	If you have never coded before
	User Input Section
	User Input Code Copy

	Hit Code Section
	Event Section

	fpxEngine System Features
	The Table Menu
	Custom Balls
	Flipper Shadows
	Ball Shadows
	BAM
	How the table is built

	fpxEngine Presets
	AddEngineEvent
	AddKeyEvent
	AddMusicSet
	AddDisplay
	AddLightFX

	AddScoringEvent
	AddScore
	BallSaver
	Jackpot
	Extra Ball
	Special
	AddMultiplier
	Mystery
	Slingshots
	InLanes
	OutLanes
	SpecialIsLit
	25KAward
	AddAlternatingLanes

	Pages still being written
	fpxAdvanceScore
	More fpxEngine Presets

	The Vault
	How to use the Vault
	Using the Vault Worksheets
	Vault - Drop Targets
	vault_fpxDropTargetBank1
	vault_fpxDropTargetBank2

	Vault - Stand Up Targets
	vault_fpxTarget3Bank1
	vault_fpxTarget3Bank2

	Vault - Triggers
	vault_fpxAV1

	Vault - Kickers
	vault_fpxKicker1

	Plastics and Spare Parts
	vault_fpxPlastics1

